Explanation:
Fgravity = G*(mass1*mass2)/D².
G is the gravitational constant, which has the same value throughout our universe.
D is the distance between the objects.
so, if you triple one of the masses, what does that do to our equation ?
Fgravitynew = G*(3*mass1*mass2)/D²
due to the commutative property of multiplication
Fgravitynew = 3* G*(mass1*mass2)/D² = 3* Fgravity
so, the right answer is 3×12 = 36 units.
By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>
The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole.
Answer:
a) T = 2.26 N, b) v = 1.68 m / s
Explanation:
We use Newton's second law
Let's set a reference system where the x-axis is radial and the y-axis is vertical, let's decompose the tension of the string
sin 30 =
cos 30 =
Tₓ = T sin 30
T_y = T cos 30
Y axis
T_y -W = 0
T cos 30 = mg (1)
X axis
Tₓ = m a
they relate it is centripetal
a = v² / r
we substitute
T sin 30 = m (2)
a) we substitute in 1
T =
T =
T = 2.26 N
b) from equation 2
v² =
If we know the length of the string
sin 30 = r / L
r = L sin 30
we substitute
v² =
v² =
For the problem let us take L = 1 m
let's calculate
v =
v = 1.68 m / s
Answer:
9ms^2
Explanation:
since ,Force=mass*acceleration
then, acceleration=force/mass
and, Force=90N
Mass=10pound
therefore, acceleration=90/10
=9ms^2