Answer:
<u>Given</u><em> </em><em>-</em><em> </em><u>M</u><u> </u><u>=</u><u> </u>20 kg
k = 0.4
F = 200 N
<u>To </u><u>find </u><u>-</u><u> </u> acceleration
<u>Solution </u><u>-</u><u> </u>
F= kMA
200 = 0.4 * 20 * acceleration
200 = 8 * a
a = 8/200
a = 0.04 m s²
<h3>a = 0.04 m s²</h3>
"The organ proved to be a vital part of the body's metabolism" "The tissue was damaged from the scalpel but would heal" "The function of the heart is to pump blood"
Answer
-Directly; outside air pressure
Vapor pressure is directly related to the temperature of the liquid. user: in an open system, the vapor pressure is equal to the outside air pressure.
Explanation;
-As the temperature of a system increases, the average kinetic energy of the molecules increases in both the liquid and gas phases.
-A higher average kinetic energy facilitates the escape of molecules from the liquid phase into the gas phase. At the same time, the rate of return of gas phase molecules to the liquid also increases. A new equilibrium point is reached at a higher gaseous vapor pressure. The increase in vapor pressure with temperature is exponential.
Answer:
gravitational force
electrostatic force
Explanation:
The forces that balloons may exert on each other can be gravitational pull due to the mass of the balloon membrane and the mass of the gas contained in each. This force is inversely proportional to the square of the radial distance between their center of masses.
The Mutual force of gravitational pull that they exert on each other can be given as:

where:
gravitational constant 
are the masses of individual balloons
the radial distance between the center of masses of the balloons.
But when there are charges on the balloons, the electrostatic force comes into act which is governed by Coulomb's law.
Given as:

where:

are the charges on the individual balloons
R = radial distance between the charges.
<h2>F = kAρv²</h2>
Explained in the attachment !
<h3>Hope it helps you!!</h3>