1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blababa [14]
2 years ago
5

In unit-vector notation, what is the torque about the origin on a particle located at coordinates (0 m, −3.0 m, 2.0 m) due to fo

rce F with arrow 1 with components F1x = 4.0 N and F1y = F1z = 0
Physics
1 answer:
irinina [24]2 years ago
4 0

Answer:

The torque about the origin is 2.0Nm\hat{i}-8.0Nm\hat{j}-12.0Nm\hat{k}

Explanation:

Torque \overrightarrow{\tau} is the cross  product between force \overrightarrow{F} and vector position \overrightarrow{r} respect a fixed point (in our case the origin):

\overrightarrow{\tau}=\overrightarrow{r}\times\overrightarrow{F}

There are multiple ways to calculate a cross product but we're going to use most common method, finding the determinant of the matrix:

\overrightarrow{r}\times\overrightarrow{F} =-\left[\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ F1_{x} & F1_{y} & F1_{z}\\ r_{x} & r_{y} & r_{z}\end{array}\right]

\overrightarrow{r}\times\overrightarrow{F} =-((F1_{y}r_{z}-F1_{z}r_{y})\hat{i}-(F1_{x}r_{z}-F1_{z}r_{x})\hat{j}+(F1_{x}r_{y}-F1_{y}r_{x})\hat{k})

\overrightarrow{r}\times\overrightarrow{F} =-((0(2.0m)-0(-3.0m))\hat{i}-((4.0N)(2.0m)-(0)(0))\hat{j}+((4.0N)(-3.0m)-0(0))\hat{k})

\overrightarrow{r}\times\overrightarrow{F}=-2.0Nm\hat{i}+8.0Nm\hat{j}+12.0Nm\hat{k}=\overrightarrow{\tau}

You might be interested in
the gasoline in a car does 40000 j of work on a car and generates a constant force of 20 n. how far did the car go?
NikAS [45]

     Work  =  (force) x (distance)

     40,000 J  =  (20 N) x (distance)

     Distance  =  (40,000 J) / (20 N)

                    =    2,000 meters

                    =     2 kilometers.

(20 N is not a huge force when it's being used to move a car.
It's only about  4.5 pounds.) 
8 0
3 years ago
Which kinds of objects emit light?
Luda [366]
A: objects that shine
Visible: Our eyes detect visible light<span>. Fireflies, </span>light<span> bulbs, and stars all </span>emit<span> visible </span>light<span>. Ultraviolet: Ultraviolet radiation is </span>emitted<span> by the Sun and are the reason skin tans and burns. "Hot" </span>objects<span> in space </span>emit<span> UV radiation as well.</span>
5 0
3 years ago
Read 2 more answers
In a collision, a car of mass 1000kg travelling at 24m/s comes to rest in 1.2s calculate
kompoz [17]

Answer:

a. 24,000

b. -20,000 N

Explanation:

a. p = m•v

1,000•24 = 24,000

1,000•0 = 0

∆p = 24,000

b. F = m•a

a = ∆v/∆t

a = -24/1.2

a = -20 m/s²

F = 1,000•(-20)

F = -20,000

8 0
2 years ago
If ∆H = + VE , THEN WHAT REACTION IT IS<br>1) exothermic<br>2) endothermic​
podryga [215]

Answer:

endothermic

Explanation:

An endothermic is any process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system.

3 0
2 years ago
The route followed by a hiker consists of three displacement vectors, X, Y and Z. Vector X is along a measured trail and is 1430
poizon [28]

Answer:

  • magnitude : 1635.43 m
  • Angle: 130°28'20'' north of east

Explanation:

First, we will find the Cartesian Representation of the \vec{X} and \vec{Y} vectors. We can do this, using the formula

\vec{A}= | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

where | \vec{A} | its the magnitude of the vector and θ the angle. For  \vec{X} we have:

\vec{X}= 1430 m \ ( \ cos( 42 \°) \ , \ sin (42 \°) \ )

\vec{X}= ( \ 1062.70 m \ , \ 956.86 m \ )

where the unit vector \hat{i} points east, and \hat{j} points north. Now, the \vec{Y} will be:

\vec{Y}= - 2200 m \hat{j} = ( \ 0 \ , \ - 2200 m \ )

Now, taking the sum:

\vec{X} + \vec{Y} + \vec{Z} = 0

This is

\vec{Z} = - \vec{X} - \vec{Y}

(Z_x , Z_y) = - ( \ 1062.70 m \ , \ 956.86 m \ ) - ( \ 0 \ , \ - 2200 m \ )

(Z_x , Z_y) = ( \ - 1062.70 m \ ,  \ 2200 m \ - \ 956.86 m \ )

(Z_x , Z_y) = ( \ - 1062.70 m \ ,  \ 1243.14 m\ )

Now, for the magnitude, we just have to take its length:

|\vec{Z}| = \sqrt{Z_x^2 + Z_y^2}

|\vec{Z}| = \sqrt{(- 1062.70 m)^2 + (1243.14 m)^2}

|\vec{Z}| = 1635.43 m

For its angle, as the vector lays in the second quadrant, we can use:

\theta = 180\° - arctan(\frac{1243.14 m}{ - 1062.70 m})

\theta = 180\° - arctan( -1.1720)

\theta = 180\° - 45\°31'40''

\theta = 130\°28'20''

5 0
3 years ago
Other questions:
  • What are the effects of noise?​
    15·1 answer
  • Light of wavelength 687 nm is incident on a single slit 0.75 mm wide. At what distance from the slit should a screen be placed i
    11·1 answer
  • Of the three forces acting on the rock as it slides down the bowl, which (if any) are constant and which are not? explain.
    12·1 answer
  • Copernicus incorrectly assumed that the planets?
    14·1 answer
  • You are driving home from school steadily at 91 km/h for 160 km . It then begins to rain and you slow to 64 km/h instantly. You
    13·1 answer
  • The 1800 kg tractor exerts a force of 1.95 104 N backward on the pavement, and the system experiences forces resisting motion th
    13·1 answer
  • A record of travel along a straight path is as follows: 1. Start from rest with constant acceleration of 2.24 m/s2 for 10.0 s. 2
    13·1 answer
  • Can Someone please help me! <br><br> What is deposition
    14·2 answers
  • Using this formula a = F/m What acceleration results from exerting a 125N force on a 0.65kg
    5·1 answer
  • A bicyclist covers the first leg of a journey that is d1meters in t1seconds at a speed of v1m/s and the second leg of d2meters i
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!