Answer:
B). 3.4 s
Explanation:
As we can see the graph is given between velocity and time
so here we can see that the velocity is changing here with time and initially for some time it moves with constant speed
Then it's speed decreases to next few second and then speed increases to its maximum value
The time after which velocity comes to its maximum value will reach after t = 3 s
so out of the all given options most correct option will be

The <span>induced emf in the coil is -45V.</span>
The initial speed of the shot is 15.02 m/s.
The Shot put is released at a height y<em> </em>from the ground with a speed u. It is released at an angle θ to the horizontal. In a time t, the shot put travels a distance <em>R</em> horizontally.
Pl refer to the attached diagram.
Resolve the velocity u into horizontal and vertical components, u ₓ=ucosθ and uy=u sinθ. The horizontal component remains constant in the absence of air resistance, while the vertical component varies due to the action of the gravitational force.
Write an expression for R.

Therefore,

In the time t, the net displacement of the shotput is y in the downward direction.
Use the equation of motion,

Substitute the value of t from equation (1).

Substitute -2.10 m for y, 24.77 m for R and 38.0° for θ and solve for u.

The shot put was thrown with a speed 15.02 m/s.
<u>Answer:</u>
<h3>As electric current is carried in a cable, around it, a magnetic field is created. The lines of the magnetic fields form concentric circles around the wire. The direction of the magnetic field hinges on the direction of the current. It can be calculated by pointing the thumb of your right hand in the direction of the moment, using the "right hand law." The position of your curled fingers is in the magnetic field lines. The magnetic field magnitude depends on the sum of current, and the distance from the wire carrying the charge.</h3>
<u></u>
<u>Explanation:</u>
Determine the direction of vector B magnitude B: 

Resultant magnitude strength:
its direction is pointing to the left.
Note: Refer the image attached below
Answer:
Explanation:
Amplitude is a measure of the size of sound waves. It depends on the amount of energy that started the waves. Greater amplitude waves have more energy and greater intensity, so they sound louder.