Answer:
Both of them.
Explanation:
They are both because when your analyzing data , that is what happen's.
Answer:

Explanation:
Hello,
In this case, since the acceleration in terms of position is defined as its second derivative:

The purpose here is derive x(t) twice as follows:

Thus, the acceleration turns out 4.8 meters per squared seconds.
Best regards.
Answer: 909 m/s
Explanation:
Given
Mass of the bullet, m1 = 0.05 kg
Mass of the wooden block, m2 = 5 kg
Final velocities of the block and bullet, v = 9 m/s
Initial velocity of the bullet v1 = ? m/s
From the question, we would notice that there is just an object (i.e the bullet) moving before the collision. Also, even after the collision between the bullet and wood, the bullet and the wood would move as one object. Thus, we would use the conservation of momentum to solve
m1v1 = (m1 + m2) v, on substituting, we have
0.05 * v1 = (0.05 + 5) * 9
0.05 * v1 = 5.05 * 9
0.05 * v1 = 45.45
v1 = 45.45 / 0.05
v1 = 909 m/s
Thus, the original velocity of the bullet was 909 m/s
Answer:
Explanation:
charge on the capacitor = capacitance x potential
= 1.588 x 3.4
= 5.4 C
Energy of capacitor = 1 / 2 C V ² , C is capacitance , V is potential
= .5 x 3.4 x 1.588²
= 4.29 J
If I be maximum current
energy of inductor = 1/2 L I² , L is inductance of inductor .
energy of inductance = Energy of capacitor
1/2 L I² = 4.29
I² = 107.25
I = 10.35 A
Time period of oscillation
T = 2π √ LC
=2π √ .08 X 3.4
= 3.275 s
current in the inductor will be maximum in T / 4 time
= 3.275 / 4
= .819 s.
Total energy of the system
= initial energy of the capacitor
= 4.29 J