The average speed of all the molecules in an object
or sample of a substance is related to its temperature ...
and not indirectly at all.
Answer:
.737 v
Explanation:
Since they are in series....they all have the same current running through them.....find the total resistance to calculate the current:
R = 67 + 83 + 433 + 309 = 892 ohm
V/R = current = 7.92 / 892 = 8.87 mAmps
Now the voltage across ecah resistor is I R
for the second one 8.87 ma * 83 ohm = V = .737 V
Acceleration = (0.2 x g) = 1.96m/sec^2.
<span>Accelerating force on 1kg. = (ma) = 1.96N. </span>
<span>1kg. has a weight (normal force) of 9.8N. </span>
<span>Coefficient µ = 1.96/9.8 = 0.2 minimum. </span>
<span>Coefficient is a ratio, so holds true for any value of mass to find accelerating force acting. </span>
<span>e.g. 75kg = (75 x g) = 735N. </span>
<span>Accelerating force = (735 x 0.2) = 147N</span>
10800 m = 10.8 km should be the answer if I am correct
Referring to Compton scattering
Δλ = h/m₀c (I- cos Ф)
λ' =λ = (0,0242×10⁻¹⁰) (1- cos 60°)
λ= λ' -(0.0242 × 10⁻¹⁰) (1- cos 60°)
7.19 ˣ 10⁻¹²m
The increased potential is given by
Vₐc = hc/eλ = 6.625 × 10 ⁻³⁴ J,s) ( 3× 10⁸ m/s ( 1.6 ˣ 10 ⁻¹⁰C)
(7.19 ˣ 10⁻¹²m)
173kV.