Answer:
A_resulting = 0.2 m
Explanation:
Let's analyze the impact of the pulse with the pole, this is a fixed obstacle that does not move therefore by the law of action and reluctant, the force that the pole applies on the rope is of equal magnitude to the force of the rope on the pole (pulse), but opposite directional, so the reflected pulse reverses its direction and sense.
With this information we analyze a point on the string where the incident pulse is and each reflected with an amplitude A = 0.1 m, the resulting is
A_res = 2A
A_resultant = 2 .01
A_resulting = 0.2 m
<em><u>throwing a ball up initially has a lot of kinetic energy because it is moving upwards ( kinetic energy is energy which a body possesses by virtue of being in motion.) this all then get converted to gravitational potential energy, and for a moment it is stationary before it begins to fall again. by the time it has returned again, all the gravitational potential energy has turned back into kinetic.</u></em>
Answer:
it is light
Explanation:
the arrow that says light is on the glass it must be near from tungsten
We first calculate the acceleration on the ball using:
2as = v² - u²; u = 0 because ball is initially at rest
a = (36)²/(2 x 0.35)
a = 1850 m/s²
F = ma
F = 0.058 x 1850
= 107.3 Newtons