Answer: -
3.3° C
Explanation: -
Mass of water m = 180.5 g
Energy released as heat Q = 2494 J
Specific heat is defined as the heat required to raise the temperature of the unit mass of a given substance by 1 C.
Specific heat of water Cp = 4.184 (J/g)⋅∘C
Using the formula
Q = m x Cp x ΔT
We get temperature change ΔT = Q / (m x Cp)
= 2494 J / ( 180.5 g x 4.184 (J/g)⋅∘C
= 3.3° C
Thus the temprature change, (ΔT), of the wateris 3.3 °C if 180.5 g of water sat in the copper pipe from part A, releasing 2494 J of energy to the pipe
Answer: The resultant pressure is 3.22 atm
Explanation:
Gay-Lussac's Law: This law states that pressure is directly proportional to the temperature of the gas at constant volume and number of moles.
(At constant volume and number of moles)
where,
= initial pressure of gas = 2.79 atm
= final pressure of gas = ?
= initial temperature of gas = 273K
= final temperature of gas = 315 K

Thus the resultant pressure is 3.22 atm
What I’m seeing on quizlet says what you’re describing is a ball-and-stick model.
Answer: Some examples are color, density, volume and mass
Explanation:
Physical properties are anything you can smell, touch, or hear. They can be observed without changing.
Answer:
A closed system is a physical system that does not allow transfer of matter in or out of the system, though, in different contexts, such as physics, chemistry or engineering, the transfer of energy is or is not allowed.
Explanation: