Answer:
sorry
Explanation:
I don't know the answer this is really confusing but I am really sorry you have to do this.
Answer:
I say the second one, im not rlly sure tho
Explanation:
Answer: Igneous rocks may be simply classified according to their chemical/mineral composition as felsic, intermediate, mafic, and ultramafic, and by texture or grain size: intrusive rocks are course grained (all crystals are visible to the naked eye) while extrusive rocks may be fine-grained (microscopic crystals) or glass.
Explanation: Hope this helped! :)
M ( HCl ) = ?
V ( HCl ) = 25.5 mL in liters : 25.5 / 1000 => 0.0255 L
M ( NaOH ) = 0.113 M
V ( NaOH ) = 51.2 mL / 1000 => 0.0512 L
number of moles NaOH:
n = M x V
n = 0.113 x <span> 0.0512 => 0.0057856 moles of NaOH
mole ratio:
</span><span>HCl + NaOH = NaCl + H2O
</span><span>
1 mole HCl -------------- 1 mole NaOH
( moles HCl ) ----------- </span><span> 0.0057856 moles NaOH
</span>
(moles HCl ) = <span> 0.0057856 x 1 / 1
</span>
= <span> 0.0057856 moles of HCl
</span>
M ( HCl ) = n / V
M = 0.0057856 / <span>0.0255
</span>
= 0.227 M
Answer A
hope this helps!
0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.