1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
2 years ago
7

30) A force produces power P by doing work W in a time T. What power will be produced by a force that does six times as much wor

k in half as much time?
A) 12P
B) 6P
C) P
D) P
E) P
Physics
1 answer:
schepotkina [342]2 years ago
4 0

Answer:

A) 12P

Explanation:

The power produced by a force is given by the equation

P=\frac{W}{T}

where

W is the work done by the force

T is the time in which the work is done

At the beginning in this problem, we have:

W = work done by the force

T = time taken

So the power produced is

P=\frac{W}{T}

Later, the force does six times more work, so the work done now is

W'=6W

And this work is done in half the time, so the new time is

T'=\frac{T}{2}

Substituting into the equation of the power, we find the new power produced:

P'=\frac{W'}{T'}=\frac{6W}{T/2}=12\frac{W}{T}=12P

So, 12 times more power.

You might be interested in
A 70.0 kg sprinter starts a race with an acceleration of 1.60 m/s^2, What is the net external force (in N) on him? (Enter the ma
Ierofanga [76]

Answer:

External force on him will be 112 N

Explanation:

We have given the mass of the sprinter m =70 kg

Acceleration of the sprinter a=1.6m/sec^2

We have to find the net external force

According to second law of motion force = mass ×acceleration

Force is dependent on the mass and acceleration

So F=70\times 1.6=112 N

So external force will be 112 N

6 0
3 years ago
A girl weighing 50 kgf wears sandals of pencil heel of area of cross section 1 cm^2, stands on the floor.An elephant weighing 20
Klio2033 [76]

Answer:

\boxed{{\boxed{\blue{ 12.5}}}}

Explanation:

Given, for girl : Weight or force;

\rm \: F_1 = 50 \: kgf

Area of both heels;

\rm \: A_1 =  \; 2 ×1 \;  cm^2 = 2  \: cm^2

\rm \: Pressure \:  P_1  =  \cfrac{F_1}{ A_1 }  =  \dfrac{50 \: kgf}{2 \: cm {}^{2} }  = 25 \: kgf \: cm {}^{ - 1}

For elephant, Weight = Force \rm F_2 = 2000 kg•f

Area of 4 feet;

\rm \: A_2  = \; 4 \times 250 \;  cm^2 = 1000 \:  cm^2

\rm \: Pressure \:  P_2 = {F_2}/{A_2} \;  = \cfrac{2 \cancel{0 00 }\:  kgf}{1 \cancel{000} \: cm^2} =  2 \: kgf \: { \:cm}^{- 1}

Now;

\rm  = \dfrac{Pressure \:  Exerted  \: by  \: the \:  Girl}{Pressure  \: exerted  \: by \:  the  \: elephant}

=  \rm \: P_1/P_2

\implies    \rm\cfrac{25 \: kgf \: \: cm {}^{ - 2} }{2 \: kgf \: cm {}^{ - 2} } =  \rm\cfrac{25 \:  \cancel{kgf \: \: cm {}^{ - 2}} }{2 \: \cancel{ kgf \: cm {}^{ - 2}} } = \boxed{12.5}

Thus, the girl's pointed heel sandals exert 12.5 times more pressure P than the pressure P exerted by the elephant.

I aspire this helps!

3 0
2 years ago
wo lacrosse players collide in midair. Jeremy has a mass of 120 kg and is moving at a speed of 3 m/s. Hans has a mass of 140 kg
Julli [10]

2.71 m/s fast Hans is moving after the collision.

<u>Explanation</u>:

Given that,

Mass of Jeremy is 120 kg (M_J)

Speed of Jeremy is 3 m/s (V_J)

Speed of Jeremy after collision is (V_{JA}) -2.5 m/s

Mass of Hans is 140 kg (M_H)

Speed of Hans is -2 m/s (V_H)

Speed of Hans after collision is (V_{HA})

Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is  

= =\mathrm{M}_{1} \times \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{H}}

Substitute the given values,

= 120 × 3 + 140 × (-2)

= 360 + (-280)

= 80 kg m/s

Linear momentum after the collision of Jeremy and Hans is  

= =\mathrm{M}_{\mathrm{J}} \times \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{HA}}

= 120 × (-2.5) + 140 × V_{HA}

= -300 + 140 × V_{HA}

We know that conservation of liner momentum,

Linear momentum before the collision = Linear momentum after the collision

80 = -300 + 140 × V_{HA}

80 + 300 = 140 × V_{HA}

380 = 140 × V_{HA}

380/140= V_{HA}

V_{HA} = 2.71 m/s

2.71 m/s fast Hans is moving after the collision.

4 0
2 years ago
A car moves along a curved road of diameter 2 km. If the maximum velocity for safe driving on this path is 30 m/s, at what angle
Leto [7]
The maximum velocity in a banked road, ignoring friction, is given by;

v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.

Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°

Therefore, the road has been banked at 5.24°.
4 0
3 years ago
Active immunity is passed on from a mother to her baby.
viva [34]
True.The immune system in babies. Antibodies are passed from mother to baby through the placenta during the last three months of pregnancy.
3 0
2 years ago
Other questions:
  • What kinds of space and matter can light travel through
    5·2 answers
  • A person with a weight of 956 N runs up a 2.41 m staircase. If it takes 4.17 seconds to reach the top, how much power was genera
    7·1 answer
  • What will most likely happen if a light wave moves through a solid?
    11·2 answers
  • Where is the resistor located on the diagram?
    7·2 answers
  • The area of the bar over r = 2 is 0.234. what is the area of the bar over r = 4?
    5·1 answer
  • A spring has been compressed inside a toy what kind of energy is this
    10·1 answer
  • The mass of an object is independent of its location.
    5·1 answer
  • How does you body reproduce
    13·1 answer
  • 3. What is the difference between the law of gravity and the theory of gravity?_________________________________________________
    15·1 answer
  • The velocity (in m/s) of a free-falling object as a function of the height from which it is dropped is
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!