Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
A mineral is a naturally occurring, inorganic solid with a definite chemical composition and a crystalline structure formed by geological processes.
A rock is an aggregate of one or more minerals. It may also contain organic remains and mineraloids apart from regular mineral formations. Since rocks vary in their mineral and chemical composition, they are classified according to the process of their formation.
Answer:
B. 2 meters.
Explanation:
To rotate the capstan a certain amount of torque is required, and if each sailor applies a force
at a distance
from the center, then for two sailors the total torque will be
;
therefore, for one sailor to apply the same torque it must be that the torque
he applies must be equal to the torque that the two sailors applied:

which gives
.
and since
,

which is choice B.
Answer:
The final kinetic energy of the two-car system is 60,000 J.
Explanation:
Given;
mass of the car, m = 1200 kg
time of motion, t = 8.8 s
final velocity of the car, v = 10 m/s
Apply the principle of conservation of kinetic energy; the initial kinetic energy is equal final kinetic energy.

Therefore, the final kinetic energy of the two-car system is 60,000 J.