The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)
Nulceus - recipe book/instruction manual
Mitochondria - Battery
Endoplasmic reticulum - Printer or a pen?
Golgi aparatus - an envelope
Chloroplasts - green rechargable battery
Cell membrane (elastic band (2 to represent the phospholipid bilayer)
Ribosomes - I guess maybe an ink pot as its the material thats used to write
Cell Wall - the paper bag
lysosomes - washing up liquid (breaks down wate food on a dirty plate)
vaculoes - bottle of water
Thank you for posting your question here at brainly. A mass of m moves with 2V towards in the opposite direction of a mass, 4m moving at a speed of V, the speed of m was 2/5V and the mass of 4m was 7.5V. I hope it helps.
Answer:
Therefore letter <u>C is the correct answer.</u>
Explanation:
In a projectile motion the total time in the air can be calculated using the following equation:
We analyze the y-component motion.

When the final velocity (v(f)) is equal to zero we calculate the upward time and multiplying it by 2 we find the total time in the air. So we will have:


We can see that the <u>total time is directly proportional to the angle</u>, then when <u>θ increase t increase.</u>
Therefore letter C is the correct answer.
I hope it helps you!
Answer:

Explanation:
Volume can be found by dividing the mass by the density.

The mass is 100 grams and density is 0.920 grams per cubic centimeters.
Therefore,

Substitute the values into the formula.

Divide. Note that the grams, or "g" will cancel each other out.

The volume of the ice cube is 108.697652 cubic centimeters.