Answer:
bhi jo bhi of gp oh oh gi IG 7u to uff do if goo td to yd do FP ae rt 7g hi pic vo icon
Explanation:
bh hi h bhi vc di oh x At jb jo iv hp of di of dr hi o hc x gh ki vc hi jo
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
Answer:
False
because I got that question and I gotted right
Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector

.
The positive y-axis = the northern direction, with unit vector

.
The airplane flies at 340 km/h at 12° east of north. Its velocity vector is

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
![\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bv%7D_%7B2%7D%20%3D40%28cos%2834%5E%7Bo%7D%29%5Chat%7Bi%7D%20-%20sin%2824%5E%7Bo%7D%29%5D%5Chat%7Bj%7D%29%20%3D%2033.1615%5Chat%7Bi%7D%20-22.3677%5Chat%7Bj%7D%29)
The plane's actual velocity is the vector sum of the two velocities. It is

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h
The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°
Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.