Answer:
Increase in wavelength of incident wave also increases the spread angle or spread of the interference pattern.
Explanation:
Solution:-
- The diffraction occurs when light bends in the same medium. The bending is the result of light waves "squeezing" through small openings or "curving" around sharp edges.
- Moreover, waves diffract best when the size of the diffraction opening (or grting or groove) corresponds to the size of the wavelength. Hence, light diffracts more through small openings than through larger openings.
- The formula for diffraction shows a direct relationship between the angle of diffraction (theta) and wavelength:
d sin (θ) = m λ
Where,
λ : Wavelength , θ : The spread angle , d : Slit opening or grating
- We can see that the wavelength λ and spread angle θ are related proportionally. So if we increase the wavelength of incident wave we also increase the spread angle or spread of the interference pattern.
Answer:
Explanation:
· If two forces are in the same direction, then one adds them to find the net force, which is the vector sum of these forces. However, when two forces act in opposite direction, one has to subtract the lesser force from the larger one to find the resulting force. The resultant is the direction of the larger of these two forces.
Answer:
8 Hz, 48 Hz
Explanation:
The standing waves on a string (or inside a pipe, for instance) have different modes of vibrations, depending on how many segments of the string are vibrating.
The fundamental frequency of a standing wave is the frequency of the fundamental mode of vibration; then, the higher modes of vibration are called harmonics. The frequency of the n-th harmonic is given by

where
is the fundamental frequency
In this problem, we know that the wave's third harmonic has a frequency of

This means this is the frequency for n = 3. Therefore, we can find the fundamental frequency as:

Now we can also find the frequency of the 6-th harmonic using n = 6:

a) x = 
at t = 5s

b) v = 
= 
at t = 5 s
v = 
c) a = 
= 28 - 12t
at t = 5 s
a = 28 -12*5= 28-60= -32 m/
d) At maximum positive coordinate velocity = 0
So, 

At t = 4.66 s

e) At t = 4.66 s
f) At maximum positive velocity a = 0


At t = 2.33 s
V = 
g) t = 2.33 s
h) When particle is not moving v = 0
So 

At t = 4.66 s
a = 
i) At t = 0s, X =0m
t = 5s, X = 100m
So, Displacement = 100m
Velocity = 
Answer:
Image result for position (m) 80 60 40 20 - 20 -40 10 20 30 40 50 time (sec) What is the displacement from 15 to 40 sec? a 20 m b Оооо - 20 m -100 m с 100 m
The average velocity of the object is multiplied by the time traveled to find the displacement. The equation x = ½( v + u)t can be manipulated, as shown below, to find any one of the four values if the other three are known.
Explanation: