1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
2 years ago
12

HELP ME, I'M BEING TIMED

Physics
2 answers:
m_a_m_a [10]2 years ago
7 0

Answer:

i think c

Explanation:

because cars run on mechanical energy and solar powered means its by the sun which is light energy

Alborosie2 years ago
5 0
I think it’s B. But I’m not fully sure
You might be interested in
A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
Oxana [17]

Answer:

A)  I_{total} = 1.44 kg m², B) moment of inertia must increase

Explanation:

The moment of inertia is defined by

     I = ∫ r² dm

For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is

      I = ½ m R²

A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is

    I = I_{cm} + m D²

Let's apply these equations to our case

The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms

      I_{total}=I_{body} + 2 I_{arm}

       I_{body} = ½ M R²

The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body

       M = 7/8 m total

       M = 7/8 64

       M = 56 kg

The mass of the arms is

      m’= 1/8 m total

      m’= 1/8 64

      m’= 8 kg

As it has two arms the mass of each arm is half

     m = ½ m ’

     m = 4 kg

The arms are very thin, we will approximate them as a particle

    I_{arm} = M D²

Let's write the equation

     I_{total} = ½ M R² + 2 (m D²)

Let's calculate

    I_{total} = ½ 56 0.20² + 2 4 0.20²

    I_{total} = 1.12 + 0.32

    I_{total} = 1.44 kg m²

b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase

6 0
3 years ago
If a small rock is dropped from a height of 3.1 m how fast will it be moving when it reaches the ground 0.80 seconds later
garik1379 [7]
X=1/2 at^2
3.1=1/2 a *0.64
a=9.68
v=at
v=0.8*9.6875=7.75

5 0
3 years ago
Tsunamis are fast-moving waves often generated by underwater earthquakes. In the deep ocean their amplitude is barely noticable,
Andrei [34K]

Answer:

a) V = 195.70 m/s

b) f=3.02 × 10⁻⁴ Hz

c) T = 3311.25 seconds

Explanation:

Given:

Wavelength, λ = 646 Km = 646000 m

Distance traveled = 3410 Km = 3410000 m

Time = 4.84 h = 4.84 × 3600 s = 17424 seconds

a) The speed (V) of the wave is given as

V = distance / time

V = 3410000 m/ 17424 seconds

or

V = 195.70 m/s

b) The frequency (f) of the wave is given as:

f = V / λ

f= 195.70 / 646000

f=3.02 × 10⁻⁴ Hz

c) The time period (T)  is given as:

T = 1/ f

T = 1/ (3.02 × 10⁻⁴) Hz

T = 3311.25 seconds

5 0
3 years ago
Soot particles ("black carbon aerosols" generally cause ________ of earth's atmosphere by ________ solar energy.
matrenka [14]
They cause an increase in temp of earths atmosphere or warming by absorbing solar energy. hope this helps
8 0
3 years ago
S GP A projectile of mass m moves to the right with a speed vi (Fig. P11.51a). The projectile strikes and sticks to the end of a
Andrews [41]

What is the kinetic energy of the system after the collision?

K_f=\frac{3}{2} \frac{m^{2}v_i^{2}  }{(M+3m)}

How this is calculated?

Given:

Initial speed=v_i

mass of rod=M

Let, Initial kinetic energy =K_i

Final kinetic energy=K_f

Moment of inertia =I

What is the moment of inertia?

I=(I_p)_0+(I_{rod})_0\\I=m(\frac{d}{2})^{2}  +\frac{Md^{2} }{12} \\I=\frac{(M+3m)d^{2} }{12}

What is the angular momentum?

By conservation of angular momentum,

L_i=L_f

mv_i\frac{d}{2}=\frac{(M+3m)d^{2}\omega }{12}  \\\omega=\frac{6mv_i^{2} }{d(M+3m)}

We know that, the final kinetic energy is given by,

K_f=I\omega^{2}\\K_f=\frac{1}{2} *\frac{(M+3m)d^{2} }{12} *\frac{36m^{2}v_i^{2}}{d^{2}(M+3m)^{2}}\\ K_f=\frac{3}{2} \frac{m^{2}v_i^{2}  }{(M+3m)}

What is the kinetic energy?

  • In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
  • It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity.
  • Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.

To know more about kinetic energy, refer:

brainly.com/question/114210

#SPJ4

8 0
1 year ago
Other questions:
  • Hey guys, I need help on number 7. Don’t know which one. <br> Which rock will weather faster? Why?
    8·2 answers
  • Two small spherical insulators separated by 2.5 cm, which is much greater than either of their diameters. Both carry positive ch
    11·1 answer
  • How reactive is an atom of Sodium(Na) and why?
    12·1 answer
  • A 2 kg mass is free falling in the negative Y direction when a 10 N force is exerted in the minus X direction. What is the accel
    8·1 answer
  • Water runs into a fountain, filling all the pipes, at a steady rate of 0.750 m3&gt;s. (a) How fast will it shoot out of a hole 4
    10·1 answer
  • Please Help! A ball is thrown straight up from the ground. What way does its acceleration point at the top?
    12·1 answer
  • A falcon is hovering above the ground, then suddenly pulls in its wings and begins to fall toward the ground. Air resistance is
    12·1 answer
  • An electric hoist does 500 joules of work lifting a crate 2 meters. How
    13·1 answer
  • What is the drawback to use period of pendulum as time standard
    12·1 answer
  • A 230 kg steel crate is being pushed along a cement floor. The force of friction is 480 N to the left and the applied force is 1
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!