Answer:
Acceleration: 
Explanation:
The acceleration of an object is equal to the rate of change of velocity:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
For the space probe in this problem, we have:
u = 100 ft/s (initial velocity)
v = 5000 ft/s (final velocity)
t = 0.5 s (time taken)
Therefore, the acceleration is

Answer:
The error he made was that he didn't convert the unit of temperature to Kelvin.
The correct efficiency is 24%
Explanation:
Parameters given:
Temperature of hot reservoir = 100°C = 373 K
Temperature of cold reservoir = 10°C = 273 K
The efficiency of a heat engine is given as:
E = 1 - (Qc/Qh) = 1 - (Tc/Th)
Where
Qc = Output heat;
Qh = Input heat;
Tc = Temperature of the cold reservoir;
Th = Temperature of the hot reservoir.
=> E = 1 - (283/373)
E = 1 - 0.76
E = 0.24
In percentage,
E = 0.24 * 100 = 24%
Hence, the efficiency of the engine is actually 24%.
The error he made was that he didn't convert the temperature to Kelvin. If we leave the temperatures in °C, we have that:
E = 1 - (10/100)
E = 1 - 0.1 = 0.9
In percentage,
E = 0.9 * 100 = 90%
Answer:
The 40g mass will be attached at 69 cm
Explanation:
First, make a sketch of the meterstick with the masses placed on it;
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm y cm
Apply principle of moment;
sum of clockwise moment = sum of anticlockwise moment
40y = 20 (38)
40y = 760
y = 760 / 40
y = 19 cm
Therefore, the 40g mass will be attached at 50cm + 19cm = 69 cm
12cm 50 cm 69cm
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm 19 cm
Answer:
A uniform ladder of mass and length leans at an angle against a frictionless wall .If the coefficient of static friction between the ladder and the ground is , determine a formula for the minimum angle at which the ladder will not slip.
Explanation:A uniform ladder of mass and length leans at an angle against a frictionless wall .If the coefficient of static friction between the ladder and the ground is , determine a formula for the minimum angle at which the ladder will not slip.
6. Drop to one quarter of its original value