Answer:
-2.3 ºC
Explanation:
Kf (benzene) = 5.12 ° C kg mol – 1
1st - We calculate the moles of condensed gas using the ideal gas equation:
n = PV / (RT)
P = 748/760 = 0.984 atm
T = 270 + 273.15 = 543.15 K
V = 4 L
R = 0.082 atm.L / mol.K
n = (0.984atm * 4L) / (0.082atm.L / K.mol * 543.15K) = 0.088 mol
Then, you calculate the molality of the solution:
m = n / kg solvent
m = 0.088 mol / 0.058 kg = 1.52mol / kg
Then you calculate the decrease in freezing point (DT)
DT = m * Kf
DT = 1.52 * 5.12 = 7.8 ° C
Knowing that the freezing point of pure benzene is 5.5 ºC, we calculate the freezing point of the solution:
T = 5.5 - 7.8 = -2.3 ºC
17. ΔH rxn is the enthalpy of a reaction. It is the amount of energy or heat absorbed in a reaction. If enthalpy is positive, it means the reaction absorbs heat, which means it is endothermic. If the enthalpy is negative, it means the reaction release heat, which means it is exothermic.
18. yes, it is possible in theory but it is not necessary. Water is the ideal, cheaper, and most abundant liquid for a calorimeter.
19. Specific heat= heat/mass*Temp. the mass is already known You can place the piece of metal in a calorimeter filled with water. the piece of metal and water must be at different temperatures. Ideally, you would heat up the water and let it cool down. This change in temperature in the temperature that goes into the formula for the piece of metal. The only missing value is the heat which can be easily calculated because water' specific heat is known which can be used to calculate the heat loss by the water, which is the same as the heat gain by the piece of metal. With all the three values calculated and measured, you can simply plug them into the formula and solve for the specific heat of the metal.
Answer:
10.60 grams of silane gas are formed.
Explanation:
From the reaction:
Mg₂Si(s) + 4H₂O(l) → 2Mg(OH)₂(aq) + SiH₄(g)
We know that the limiting reactant is Mg₂Si, so to find the mass of SiH₄ formed we need to calculate the number of moles of Mg₂Si:

Where:
m: is the mass of Mg₂Si = 25.0 g
M: is the molar mass of Mg₂Si = 76.69 g/mol

Now, the stoichiometric relation between Mg₂Si and SiH₄ is 1:1 so:

Finally, the mass of SiH₄ is:

Therefore, 10.60 grams of silane gas are formed.
I hope it helps you!
Answer:
. A closed system allows only energy transfer but no transfer of mass. Example: a cup of coffee with a lid on it, or a simple water bottle. ... In reality, a perfectly isolated system does not exist, for instance hot water in a thermos flask cannot remain hot forever.
I believe that the best answer among the choices provided by the question is <span>It is the difference between reactant energy and maximum energy.
</span>
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.