Answer:
The work done by the gravel to stop the truck is 520.44 kJ
Explanation:
<u>Step 1</u>: Data given
Mass of the truck = 3047.8 kg
The ramp has an angle of 9.5 °
Velocity of the truck = 20.68 m/s
distance = 26.6 meters
<u>Step 2:</u> Calculate initial kinetic energy
sin 9.5° = 0.165
h = ℓ*sin 9.5° = 26.6*0.165= 4.39 m
Ek = 1/2m*Vo² = 1/2*3047.8*20.68² = 651714.7 Joule = 651.7 kJ = initial kinetic energy
<u>Step 3: </u>Calculate potential energy
Epot = U = m*g*h = 3047.8*9.81*4.39 = 131256.25 Joule = 131.26 kJ
<u>Step 4:</u> What work is done by the truck on the gravel?
Frictional energy Ef = 651.7 kJ - 131.26 kJ = 520.44 kJ
Answer:
The average force exerted on the window due to two snowballs is 6 N
Explanation:
Given:
Mass of snowballs
Kg
Velocity of snowball 
For finding the average force,
Force is equal to the change in momentum,

Here, final velocity is zero so we write,

Where
sec

N
Above value of force is due to one ball, but here given in question there are two ball,

N
Therefore, the average force exerted on the window due to two snowballs is 6 N
"<span>During radioactive decay, atoms break down, releasing, particles or energy" is the one statement about radioactive decay among the following choices given in the question that is true. The correct option is option "b".
"H</span>alf-life" is the term among the following that <span>refers to the time it takes for one-half of the radioactive atoms in a sample of a radioactive element to decay. The correct option is option "d".</span>
Explanation:
A) Use Hooke's law to find the spring constant.
F = kx
40 N = k (0.4 m)
k = 100 N/m
B) Period of a spring-mass system is:
T = 2π √(m / k)
T = 2π √(2.6 kg / 100 N/m)
T = 1 s
Frequency is the inverse of period.
f = 1 / T
f = 1 Hz
Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.