Answer:
The law of multiple proportions states that when two elements can combine in different ratios to form different compounds, the masses of the element combining with the fixed mass of another element result in whole number ratios. This shows that the law of multiple proportions is followed
Explanation:
Answer:
Mc = 1920[lb*in]
Explanation:
Para poder solucionar este problema debemos realizar un análisis estático, por tal motivo lo primero es realizar un diagrama de cuerpo libre con las respectivas fuerzas actuando sobre la barra ABC. DE igual manera calcular la geometría de la configuración mostrada.
El diagrama de cuerpo libre se puede ver en la imagen adjunta, con la solución de este problema.
Lo primero es determinar el angulo t, el cual por medio de las propiedades del triangulo rectángulo se puede determinar.
Con este angulo (t) ya determinado, fijamos la atención en el triangulo BCD, este triangulo no es rectángulo, pero por medio de la ley de senos podemos determinar el angulo omega.
Después de determinar el angulo omega, restamos el angulo (t) para poder determinar el angulo (a).
Seguidamente realizamos una sumatoria de momentos alrededor del punto C, utilizado las respectivas fuerzas con los ángulos descompuestos.
El momento en el punto C es de 1920 [Lb*in].
Nota: ya que no se menciona la fuerza en el punto A, esta se desprecia y no se tiene en cuenta en los calculos. En la imagen adjunta se puede ver el procedimiento desarrollado.
Answer:
The moist air mass would be denser
Explanation:
Density is defined as mass per unit volume. Hence the density of a substance (solid, liquid or gas) is directly proportional to its mass and inversely proportional to the volume occupied.
The mass of a gas is the product of its number of moles and its molar mass (mass = number of moles × molar mass), which indicates that the mass is directly proportional to molar mass, so the higher the molar mass, the higher the mass of different gases at equal volumes, temperature and pressure.
From the information given, the molar weight of dry air = 29g/mole.
The molar weight of moist air = molar weight of dry air + molar weight of water vapour = 29 + 18 = 47g/mole.
Therefore since higher molar mass transits to higher mass, it can be said that moist air of molar mass 47g/mole is denser than dry air of molar mass 29g/mole at equal volume, temperature and pressure.
Simple picture the two gasses in two transparent jars, the heavier gas (moist air) settles more at the bottom of the jar, and has less random motion hence is more compressed and denser, than dry air that has more freedom to move randomly because of its lesser weight.
Answer:
sodium and chlorine have a large difference in electronegativity (the ability of an element to pull on electrons), resulting in a big difference in electron sharing, producing a molecule with a large “dipole moment” or polarity. The polarity means that the components (ions, in this case) are REALLY attracted to each other, and are so attracted that they stick together (in this case, in a crystal lattice). It takes a LOT of energy to get them to loosen this lattice and melt. All that energy = high temperature.
hydrogen and chlorine don’t have such a large difference in electronegativity, therefore
not as much polarity
the parts aren’t as attracted to each other
takes less energy to melt the solid
lower mP.Explanation: