You’re correct hope this helps :)
Answer:
The speed, magnitude of the velocity, magnitude of the angular velocity, magnitude of the centripetal acceleration, magnitude of the net force and direction of the angular velocity are constant.
Explanation:
In uniform circular motion we have a centripetal acceleration of constant magnitude but changing direction (since it points to the center of the circle from the object). The same goes for the net (centripetal) force since F=ma. This makes the magnitude of the velocity (speed) constant but its direction changes, although keeping spinning in the same direction, which makes its angular velocity constant in both magnitude and direction.
Answer:
(a) a = - 201.8 m/s²
(b) s = 197.77 m
Explanation:
(a)
The acceleration can be found by using 1st equation of motion:
Vf = Vi + at
a = (Vf - Vi)/t
where,
a = acceleration = ?
Vf = Final Velocity = 0 m/s (Since it is finally brought to rest)
Vi = Initial Velocity = (632 mi/h)(1609.34 m/ 1 mi)(1 h/ 3600 s) = 282.53 m/s
t = time = 1.4 s
Therefore,
a = (0 m/s - 282.53 m/s)/1.4 s
<u>a = - 201.8 m/s²</u>
<u></u>
(b)
For the distance traveled, we can use 2nd equation of motion:
s = Vi t + (0.5)at²
where,
s = distance traveled = ?
Therefore,
s = (282.53 m/s)(1.4 s) + (0.5)(- 201.8 m/s²)(1.4 s)²
s = 395.54 m - 197.77 m
<u>s = 197.77 m</u>
The answer is B . You begin with a purpose for the lab, then hypothesize on what you believe will happen. Next, follow the procedures. This is always the last step, Anatoly did. Reflect upon you hypothesis, did the lab support or disprove your hypothesis. Include observations you have made. Identify errors.
A because of the object isn’t rolling yet and it’s circular then it has the potential to roll