Answer:
The person has no displacement
Explanation:
The given parameters are
The location of the person = The equator
The distance covered in one revolution = Total distance around the body
The total distance around the Earth = The circumference of the Earth = 40.075 kilometres
The total distance moved by the person standing at the equator during the Earths complete revolution = 40,075 kilometres
The initial location of the person in relation to a fixed point in space outside Earth at the start of the revolution = x km
The final location of the person in relation to the fixed point in space outside Earth at the completion of the revolution = x km
The displacement = Change in position = Final location - Initial location
∴ The displacement = x km - x km = 0 km.
Answer:
T₂ = 305.17 K
Explanation:
Given that,
Heat, Q = 6000 J
Mass, m = 200 gram
Initial temperature, T₁ = 25° C
We need to find its final temperature. Let it is T₂.
We know that,

Where
c is the specific heat of water, c = 4.18 J/g°C
So,

So, the final temperature is equal to 305.17 K.
Answer:
Explanation:
Given
Mass of car A
Mass of car B
velocity of cart A=3 m/s
velocity of cart B=-7 m/s
Conserving momentum



Answer:
energy = 391.902 kJ /mol
Explanation:
given data
wavelength = 305 nm = 305 ×
m
to find out
average energy
solution
we know speed of light is 3 ×
m/s
so we find frequency here first by speed of light formyla
speed = wavelength × frequency
3 ×
= 305 ×
× frequency
frequency = 9.8360 ×
so energy is
energy = hf
here h = 6.62 ×
J-s
so
energy = 6.62 ×
× 9.8360 ×
energy = 6.51 ×
J
so
energy = 6.51 ×
×
kJ/mol
energy = 391.902 kJ /mol
Answer:
Option 5. 1 and 3
Solution:
The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.
The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.
In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction before it hits the ground.