1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
5

What form of energy transforms to what other form when you turn on a steam iron?

Physics
2 answers:
timama [110]3 years ago
4 0
Electrical energy to thermal energy
Likurg_2 [28]3 years ago
4 0
<span> The form of energy transforms to what other form when you turn on a steam iron is the conversion of
</span>ELECTRICAL ENERGY TO THERMAL ENERGY
As it contains most particles 
so i conclude option D is correct
hope it helps
You might be interested in
Which of the following is not an application of Doppler technology?
allsm [11]
The correct answer to the question above is The third Option: C; ultrasound imaging of the liver. The ultrasound imaging of the liver is definitely not an application of Doppler technology.

Hope this helps! :)
8 0
3 years ago
Read 2 more answers
What happens if you add additional,solid NaCl after the maximum has been reached?
azamat
<span>it would bond to the phosphate 

</span>
3 0
3 years ago
Read 2 more answers
In a carrom game, a striker weighs three times the mass of the other pieces, the carrom men and the queen, which each have a mas
Mila [183]

Answer:

- The final velocity of the queen is (3/2) of the initial velocity of the striker. That is, (3V/2)

- The final velocity of the striker is (1/2) of the initial velocity of the striker. That is, (V/2)

Hence, the relative velocity of the queen with respect to the striker after collision

= (3V/2) - (V/2)

= V m/s.

Explanation:

This is a conservation of Momentum problem.

Momentum before collision = Momentum after collision.

The mass of the striker = M

Initial Velocity of the striker = V (+x-axis)

Let the final velocity of the striker be u

Mass of the queen = (M/3)

Initial velocity of the queen = 0 (since the queen was initially at rest)

Final velocity of the queen be v

Collision is elastic, So, momentum and kinetic energy are conserved.

Momentum before collision = (M)(V) + 0 = (MV) kgm/s

Momentum after collision = (M)(u) + (M/3)(v) = Mu + (Mv/3)

Momentum before collision = Momentum after collision.

MV = Mu + (Mv/3)

V = u + (v/3)

u = V - (v/3) (eqn 1)

Kinetic energy balance

Kinetic energy before collision = (1/2)(M)(V²) = (MV²/2)

Kinetic energy after collision = (1/2)(M)(u²) + (1/2)(M/3)(v²) = (Mu²/2) + (Mv²/6)

Kinetic energy before collision = Kinetic energy after collision

(MV²/2) = (Mu²/2) + (Mv²/6)

V² = u² + (v²/3) (eqn 2)

Recall eqn 1, u = V - (v/3); eqn 2 becomes

V² = [V - (v/3)]² + (v²/3)

V² = V² - (2Vv/3) + (v²/9) + (v²/3)

(4v²/9) = (2Vv/3)

v² = (2Vv/3) × (9/4)

v² = (3Vv/2)

v = (3V/2)

Hence, the final velocity of the queen is (3/2) of the initial velocity of the striker and is in the same direction.

The final velocity of the striker after collision

= u = V - (v/3) = V - (V/2) = (V/2)

The relative velocity of the queen withrespect to the striker after collision

= (velocity of queen after collision) - (velocity of striker after collision)

= v - u

= (3V/2) - (V/2) = V m/s.

Hope this Helps!!!!

3 0
3 years ago
Read 2 more answers
What happens in a tug of war if the net forces are balanced and why?
FinnZ [79.3K]

Answer:

Balanced forces are responsible for unchanging motion. Balanced forces are forces where the effect of one force is cancelled out by another. A tug of war, where each team is pulling equally on the rope, is an example of balanced forces. The forces exerted on the rope are equal in size and opposite in direction.

Explanation:

6 0
3 years ago
An alert driver can apply the brakes fully in about 0.5 seconds. How far would the car travel if it
dybincka [34]

Answer:

The car would travel after applying brakes is, d = 14.53 m

Explanation:

Given that,

The time taken to apply brakes fully is, t = 0.5 s

The velocity of the car, v = 29.06 m/s

The distance traveled by the car in 0.5 s, d = ?

The relation between the velocity, displacement, and time is given by the formula                

                                d = v x t    m

Substituting the values in the above equation,

                                  d = 29.06 m/s x 0.5 s

                                     = 14.53 m

Therefore, the car would travel after applying brakes is, d = 14.53 m

8 0
3 years ago
Other questions:
  • Which state of matter has particles with the greatest amount of kinetic energy?
    9·1 answer
  • if a force is applied to an object is not greater than the starting friction what will happen to the object
    12·1 answer
  • The driver of a pickup truck going 89.9 km/h applies the brakes giving the truck a uniform deceleration of 5.99 m/s^2 while it t
    6·1 answer
  • The angular velocity of a process control motor is (13−12t2) rad/s, where t is in seconds. Part A At what time does the motor re
    13·1 answer
  • Asteroid Toutatis passed near Earth in 2006 at four times the distance to our Moon. This was the closest approach we will have u
    11·1 answer
  • Unrealistic portrayals of slim bodies can encourage people to lose an unhealthy amount of weight. Being underweight or malnouris
    14·1 answer
  • Kyle, a 95.0 kg football player, leaps straight up into the air (with no horizontal velocity) to catch a pass. He catches the 0.
    5·1 answer
  • Based on its location on the periodic table, an element that is not naturally occurring is?​
    15·1 answer
  • 2) If the current in any circuit reach to infinity then its resistance becomes
    9·1 answer
  • katniss shoots an arrow horizontally frok a height of 1.8m. if the arrows initial velocity is 32m/s , how far will the arrow tra
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!