<u>Answer:</u> The freezing point of solution is -117.54°C and the boiling point of solution is 80.48°C
<u>Explanation:</u>
To calculate the mass of ethanol, we use the equation:
![\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}](https://tex.z-dn.net/?f=%5Ctext%7BDensity%20of%20substance%7D%3D%5Cfrac%7B%5Ctext%7BMass%20of%20substance%7D%7D%7B%5Ctext%7BVolume%20of%20substance%7D%7D)
Density of ethanol = 0.789 g/mL
Volume of ethanol = 96.3 mL
Putting values in above equation, we get:
![0.789g/mL=\frac{\text{Mass of ethanol}}{96.3mL}\\\\\text{Mass of ethanol}=(0.789g/mL\times 96.3mL)=75.98g](https://tex.z-dn.net/?f=0.789g%2FmL%3D%5Cfrac%7B%5Ctext%7BMass%20of%20ethanol%7D%7D%7B96.3mL%7D%5C%5C%5C%5C%5Ctext%7BMass%20of%20ethanol%7D%3D%280.789g%2FmL%5Ctimes%2096.3mL%29%3D75.98g)
- <u>Calculating the freezing point:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:
![\Delta T_f=\text{Freezing point of pure solution}-\text{Freezing point of solution}](https://tex.z-dn.net/?f=%5CDelta%20T_f%3D%5Ctext%7BFreezing%20point%20of%20pure%20solution%7D-%5Ctext%7BFreezing%20point%20of%20solution%7D)
To calculate the depression in freezing point, we use the equation:
![\Delta T_f=iK_fm](https://tex.z-dn.net/?f=%5CDelta%20T_f%3DiK_fm)
Or,
![\text{Freezing point of pure solution}-\text{Freezing point of solution}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}](https://tex.z-dn.net/?f=%5Ctext%7BFreezing%20point%20of%20pure%20solution%7D-%5Ctext%7BFreezing%20point%20of%20solution%7D%3Di%5Ctimes%20K_f%5Ctimes%20%5Cfrac%7Bm_%7Bsolute%7D%5Ctimes%201000%7D%7BM_%7Bsolute%7D%5Ctimes%20W_%7Bsolvent%7D%5Ctext%7B%20%28in%20grams%29%7D%7D)
where,
Freezing point of pure solution = -114.1 °C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point elevation constant = 1.99°C/m
= Given mass of solute (ethylene glycol) = 8.15 g
= Molar mass of solute (ethylene glycol) = 62 g/mol
= Mass of solvent (ethanol) = 75.98 g
Putting values in above equation, we get:
![-114.1-\text{Freezing point of solution}=1\times 1.99^oC/m\times \frac{8.15\times 1000}{62g/mol\times 75.98}\\\\\text{Freezing point of solution}=-117.54^oC](https://tex.z-dn.net/?f=-114.1-%5Ctext%7BFreezing%20point%20of%20solution%7D%3D1%5Ctimes%201.99%5EoC%2Fm%5Ctimes%20%5Cfrac%7B8.15%5Ctimes%201000%7D%7B62g%2Fmol%5Ctimes%2075.98%7D%5C%5C%5C%5C%5Ctext%7BFreezing%20point%20of%20solution%7D%3D-117.54%5EoC)
Hence, the freezing point of solution is -117.54°C
- <u>Calculating the boiling point:</u>
Elevation in boiling point is defined as the difference in the boiling point of solution and freezing point of pure solution.
The equation used to calculate elevation in boiling point follows:
![\Delta T_b=\text{Boiling point of solution}-\text{Boiling point of pure solution}](https://tex.z-dn.net/?f=%5CDelta%20T_b%3D%5Ctext%7BBoiling%20point%20of%20solution%7D-%5Ctext%7BBoiling%20point%20of%20pure%20solution%7D)
To calculate the elevation in boiling point, we use the equation:
![\Delta T_b=iK_bm](https://tex.z-dn.net/?f=%5CDelta%20T_b%3DiK_bm)
Or,
![\text{Boiling point of solution}-\text{Boiling point of pure solution}=i\times K_b\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ in grams}}](https://tex.z-dn.net/?f=%5Ctext%7BBoiling%20point%20of%20solution%7D-%5Ctext%7BBoiling%20point%20of%20pure%20solution%7D%3Di%5Ctimes%20K_b%5Ctimes%20%5Cfrac%7Bm_%7Bsolute%7D%5Ctimes%201000%7D%7BM_%7Bsolute%7D%5Ctimes%20W_%7Bsolvent%7D%5Ctext%7B%20in%20grams%7D%7D)
where,
Boiling point of pure solution = 78.4°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal boiling point elevation constant = 1.20°C/m.g
= Given mass of solute (ethylene glycol) = 8.15 g
= Molar mass of solute (ethylene glycol) = 62 g/mol
= Mass of solvent (ethanol) = 75.98 g
Putting values in above equation, we get:
![\text{Boiling point of solution}-78.4=1\times 1.20^oC/m\times \frac{8.15\times 1000}{62\times 75.98}\\\\\text{Boiling point of solution}=80.48^oC](https://tex.z-dn.net/?f=%5Ctext%7BBoiling%20point%20of%20solution%7D-78.4%3D1%5Ctimes%201.20%5EoC%2Fm%5Ctimes%20%5Cfrac%7B8.15%5Ctimes%201000%7D%7B62%5Ctimes%2075.98%7D%5C%5C%5C%5C%5Ctext%7BBoiling%20point%20of%20solution%7D%3D80.48%5EoC)
Hence, the boiling point of solution is 80.48°C