Answer:
a)= 0.025602u
b) = 23.848MeV
c) N = 1.546 × 10¹³
Explanation:
The reaction is
²₁H + ²₁H ⇄ ⁴₂H + Q
a) The mass difference is
Δm = 2m(²₁H) - m (⁴₂H)
= 2(2.014102u) - 4.002602u
= 0.025602u
b) Use the Einstein mass energy relation ship
The enegy release is the mass difference times 931.5MeV/U
E = (0.025602) (931.5)
= 23.848MeV
c)
the number of reaction need per seconds is
N = Q/E
= 59W/ 23.848MeV

N = 1.546 × 10¹³
Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
average speed is 60km/h
Explanation:
you sum up the speed attained in each distance covered and divide it by 2 to get your answer
Answer:
=3.5 m/s
Explanation:
y = x tanθ - 1/2 g x² / (u²cos²θ )
y = 0.25 , x = 0.5, θ = 40°
.25 = .50 tan40 - .5 x 9.8x x²/ u²cos²40
.25 = .42 - 2.0875/u²
u = 3.5 m / s.
The answers A, this is because Ice is originally water and when water goes below it's freezing point it turns into ice