The easiest way is to fill two very light globes, each with a different gas.
Blow globe 1 with gas from the cylinder marked with label 1, and blow glove 2 with gas from the cylinder marked with label 2.
If a globe ascends in the air, it is because its gas is less dense than air.
Inflate the globes quite enough to be sure that the mass of the rubber of the globe is not important relative to the mass of gas and so it does not change the results. If you obtain a result where the globe does not have a cliea ascending or descending motion, you can inflate more the globe and it shouuld start to rise if the gas really is less dense than air.
Answer:
1.16kg is the answer. Hope this helped
Explanation:
Answer:
r = 5.07 m
Explanation:
given,
velocity of the man , v = 3.43 m/s
centripetal acceleration, a = 2.32 m/s²
magnitude of position of = ?
using centripetal acceleration formula



r = 5.07 m
The magnitude of the position vector relative to rotational axis is equal to 5.07 m.
Answer:
Explanation:
Let the balls collide after time t .
distance covered by falling ball
s₁ = v₀ t + 1/2 g t²
distance covered by rising ball
s₂ = v₀ t - 1/2 g t²
Given ,
s₁ + s₂ = D
D = v₀ t + 1/2 g t² + v₀ t - 1/2 g t²
= 2v₀ t
t = D / 2v₀
s₂ = v₀ t - 1/2 g t²
= v₀ x D / 2v₀ - (1/2) x g x D² / 4v₀²
= D / 2 - gD² / 8 v₀²