Answer:
2.72 cycles
Explanation:
First of all, let's find the time that the stone takes to reaches the ground. The stone moves by uniform accelerated motion with constant acceleration g=9.8 m/s^2, and it covers a distance of S=44.1 m, so the time taken is

The period of the pendulum instead is given by:

Therefore, the number of oscillations that the pendulum goes through before the stone hits the ground is given by the time the stone takes to hit the ground divided by the period of the pendulum:

Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:

<em>where
: is the photon energy,
: are the rest energies of the proton and the antiproton, respectively, equals to m₀c²,
: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:

Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Answer:
15
Explanation:
P=W/T
T=6sec
W=?
F=60N
S=18m
W=F X S. .s indicate displacement
W=60x18
W=108
So p=108 j/6sec
P=15watt
Answer:
(a) 1.414 km
(b) 1.06 m/s
Explanation:
(a) For John:
Distance = 1 km north and then 1 km east
Speed = 1.5 m/s
total distance traveled = 1 + 1 = 2 km = 2000 m
Time taken to travel = Distance / speed
t = 2000 / 1.5 = 1333.3 seconds
Displacement =
(b) For jane :
Time is same as john = 1333.33 second
Distance = 1.414 km = 1414 m
Speed = distance / time = 1414 / 1333.33 = 1.06 m/s
Force=mass*acceleration
F=ma
F=25*5
F=100 N