<h2>♨ANSWER♥</h2>
length of V-50 = 49mm
length of V-1 = 49/50mm
= 0.98mm
so,
minor measurement = (M-1) - (V-1)
= 1mm -0.98mm
= 0.02mm
☆ Therefore,
The minor measurement of the vernier scale is 0.02mm.
<u>☆</u><u>.</u><u>.</u><u>.</u><u>hope this helps</u><u>.</u><u>.</u><u>.</u><u>☆</u>
_♡_<em>mashi</em>_♡_
Answer:
Explanation:
ACCORDING TO NEWTONS SECOND LAW;
F = mass * acceleration
F = m(v-u/t)
m is the mass = 0.15kg
v is the final velocity = 11m/s
u is the initial velocity = 0m/s
t is the time = 0.015
Substitute;
F = 0.15(11-0)/0.015
F = 0.15(11)/0.015
F = 1.65/0.015
F = 110N
Hence the net force is 110N
Answer:
solution given:
acceleration (a)=?
initial velocity (u)=3m/s
final velocity (v)=6m/s
distance (s)=90m
we have
v²=u²+2as
substituting value
6²=3²+2*a*90
36=9+180a
36-9=180a
a=25/180
<u>a=0.1388m/s²</u>
T<span>he correct unit for electrical power is "watt".
</span>
That<span>’s actually the unit that measures the rate per time that electric energy is transferred.</span>
<span>
</span>
<span>Have a nice day! :)</span>
Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k