<h2>
Power of cheetah is 5576.85 W = 7.48 hp</h2>
Explanation:
Power is the ratio of energy to time.
Here we need to consider kinetic energy,
Mass, m = 102 kg
Initial velocity = 0 m/s
Final velocity = 16.2 m/s
Time, t = 2.4 s
Initial kinetic energy = 0.5 x Mass x Initial velocity² = 0.5 x 102 x 0² = 0 J
Final kinetic energy = 0.5 x Mass x Final velocity² = 0.5 x 102 x 16.2² = 13384.44 J
Change in energy = Final kinetic energy - Initial kinetic energy
Change in energy = 13384.44 - 0
Change in energy = 13384.44 J
Power = 13384.44 ÷ 2.4 = 5576.85 W = 7.48 hp
Power of cheetah is 5576.85 W = 7.48 hp
According to Archimede's principle, a physical object experiences an upthrust due to a difference in pressure between upper and lower surfaces.
<h3>What is an
upthrust?</h3>
An upthrust is also referred to as buoyancy and it can be defined as an upward force which is exerted by a fluid (liquid or gas), so as to oppose the weight of a partially or fully immersed physical object that is floating in it.
Based on scientific information, a physical object experiences an upthrust when it is immersed in a fluid due to a difference in height and pressure between upper (top) and lower (bottom) surfaces.
According to Archimede's principle, there is a higher pressure at the bottom of the physical object due to height, and a lower pressure at the top of the physical object.
Read more on upthrust here: brainly.com/question/24389514
#SPJ1
Answer:
False
Explanation:
Let's consider the definition of the angular momentum,

where
is the moment of inertia for a rigid body. Now, this moment of inertia could change if we change the axis of rotation, because "r" is defined as the distance between the puntual mass and the nearest point on the axis of rotation, but still it's going to have some value. On the other hand,
so
unless
║
.
In conclusion, a rigid body could rotate about certain axis, generating an angular momentum, but if you choose another axis, there could be some parts of the rigid body rotating around the new axis, especially if there is a projection of the old axis in the new one.
25,000 Feet = 7620m
PE = mgh where m is mass, g is gravity accel: 9.8 n h is height
= 90 x 9.8 x 7620
= 6720840J
= 6.72MJ
F = ma where m is mass, a is accel = gravity = 9.8
= 90 x 9.8
= 882N
Accel = gravity = 9.8m/s^2
KE = 1/2mv^2 where m is mass n v is vel
if no wind resistance, PE leaving airplane = KE at net
6720840 = 1/2 x 90 x v^2
v^2 = 149352
v = 386.5m/s
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.