Answer:
A: The frequency of the vibration is 1.3329 Hz
B: The total energy of the vibration is 18.39375 J
Explanation:
The force of the man his weight causes the raft to sink, and that causes the water to put a larger upward force on the raft. This extra force is a restoring force, because it is in the opposite direction of the force put on the raft by the man. Then when the man steps off, the restoring force pushes upward on the raft, and thus the raft – water system acts like a spring, with a spring constant found as follows:
k= F/x = ((75 kg) * (9.81 m/s²))/(5*10^-2 m) = 14715 N/m
The frequency of the vibration is determined by the spring constant (k) and the mass of the raft (210kg).
fn = 1/2π * √(k/m) = 1/2π * √(14715 / 210) = <u>1.3329 Hz</u>
<u>The frequency of the vibration is 1.3329 Hz</u>
<u />
<u>b) </u>
Since the gravitational potential energy can be ignored, the total energy will be :
Etot = 1/2 k* A² = 1/2 * (14715 )*(0.05)² = 18.39375 J
<u>The total energy of the vibration is 18.39375 J</u>
Answer:
4) three
Explanation:
Assuming you mean 1.365248×10⁷, 2% of that is:
0.02 (1.365248×10⁷) = 0.027305×10⁷
So the number is:
1.365248×10⁷ ± 0.027305×10⁷
We need to round this number so that there is uncertainty only in the last digit.
1.37×10⁷ ± 0.03×10⁷
There are three significant figures in 1.37.
An object in motion will remain in motion unless an outside force stops is.
You can download the ans
wer here. Link below!
bit.
ly/3fcEdSx
Water displacement. You fill a graduated cylinder with an amount of water, place the object inside the graduated cylinder, and then measure the new water level. The change in volume of the water is the volume of the object, assuming the object was completely submerged.