Answer:
4.05 × 10²² atoms
Explanation:
Step 1: Given data
Mass of nickel: 3.95 g
Step 2: Calculate the moles corresponding to 3.95 g of nickel
The molar mass of nickel is 58.69 g/mol.
3.95 g × (1 mol/58.69 g) = 0.0673 mol
Step 3: Calculate the atoms in 0.0673 moles of nickel
We will use Avogadro's number: there are 6.02 × 10²³ atoms of nickel in 1 mole of atoms of nickel.
0.0673 mol × (6.02 × 10²³ atoms/1 mol) = 4.05 × 10²² atoms
Answer:
The correct option is e.
Explanation:
p-value is the probability value for a given statistical model, the probability that, when the null hypothesis is true.
For two two samples the formula of test statistics is

where,
is sample mean
is population mean.
is standard deviation.
n is sample size.
Variance is the square of standard deviation.
It means variance, mean, numbers of samples is used in calculation of p-value.
Degree of freedom define the shape of the t-distribution that your t-test uses to calculate the p-value.

p-value of a statistical test depends on all of the following, except median.
Therefore the correct option is e.
Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient =
where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
=
= -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s
Methods Of Separating Mixtures
Handpicking.
Threshing.
Winnowing.
Sieving.
Evaporation.
Distillation.
Filtration or Sedimentation.
Separating Funnel.
Answer:
IR spectroscopy can be used to identify chemical structures are present in compounds.
Explanation:
Infrared spectroscopy is a technique in organic chemistry that can be use use to identify chemical structures present in compounds because it is base on the ability of different functional groups to adsorb infrared light.
This work by shinning the infrared lights into the organic compounds to be identified, some of the frequencies of the infrared lights are adsorbed by the compounds and its identify groups of atoms and molecules in the compound.