Answer:
Explanation:
Use one of your experimentally determined values of k, the activation energy you determined, and the Arrhenius equation to calculate the value of the rate constant at 25 °C. Alternatively, you can simply extrapolate the straight line plot of ln(k) vs. 1/T in your notebook to 1/298 , read off the value of ln(k), and determine the value of k. Please put your answer in scientific notation. slope=-12070, Ea=100kJ/mol, k= 0.000717(45C), 0.00284(55C), 0.00492(65C), 0.0165(75C), 0.0396(85C)
Explanation;
According to Arrhenius equation:
i.e. ln(k2/k1) = -Ea/R (1/T2 - 1/T1)
Where, k1 = 0.000717, T1 = 45 oC = (45+273) K = 318 K
T2 = 25 oC = (25 + 273) K = 298 K
i.e. ln(k2/0.000717) = -12070 (1/298 - 1/318)
i.e. ln(k2/0.000717) = -2.54738
i.e. k2/0.000717 = 
= 0.078286
Therefore, the required constant (k2) = 0.078286 * 0.000717 = 
Answer:
Explanation:
Hello,
Considering the chemical reaction, the enthalpy of reaction is given by:
ΔH°rxn=ΔfHCO2+ΔfHH2O-ΔfHC8H18
(ΔfHO2=0)
Taking into account that the reaction produces energy, ΔH°rxn is negative. No, solving for ΔfHC8H18:
ΔfHC8H18=-ΔH°rxn+8*ΔfHCO2+9*ΔfHH2O
ΔfHC8H18=-(-5104.1 kJ/mol)+9*(-292.74kJ/mol)+8*(-393.5 kJ/mol)
ΔfHC8H18=-678.56 kJ/mol
Best regards.
Answer:
mass HF = 150.05 g
Explanation:
- SiO2(s) + 4HF(g) → SiF4(g) + 2H2O(l)
⇒ Q = (ΔH°rxn * mHF) / (mol HF * MwHF )
∴ MwHF = 20.0063 g/mol
∴ mol HF = 4 mol
∴ ΔH°rxn = - 184 KJ
∴ Q = 345 KJ
mass HF ( mHF ):
⇒ mHF = ( Q * mol HF * MwHF ) / ΔH°rxn
⇒ mHF = ( 345 KJ * 4mol HF * 20.0063 g/mol ) / 184 KJ
⇒ mHF = 150.05 g HF
No it depends on the molecules strength
Answer: Elements are arranged from fewest protons to most protons.
Explanation: