Answer:

Explanation:
We usually approximate the density of water to about
at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about
. For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at
, and the density at this point is exactly
.
Answer:
c- dry cells can not be recharged
The answer is potassium magnate
The investigation using solid and liquid water to show that thermal energy is not the same as temperature is:
- Place a glass of water and a lake and both should be at the same temperature, find out if do they have the same amount of total thermal energy.
<h3>What is the response to the experiment above?</h3>
The response is No, because the lake is known to have a lot more particles than the glass of water and so they will not have the same thermal energy.
Note that the temperature is seen as the an average and thermal energy is seen to be the total. A glass of water can be able to have the same temperature as what we call Lake Superior, but the lake has a lot of thermal energy due to the fact that the lake has a lot of water molecules.
So the investigation using solid and liquid water to show that thermal energy is not the same as temperature is Place a glass of water and a lake and both should be at the same temperature, find out if do they have the same amount of total thermal energy.
Learn more about thermal energy from
brainly.com/question/19666326
#SPJ1
Answer:
the waves have a trough
Explanation:
just took the test on edg.