Carbohydrates,Lipids,Proteins,Nucleic acids,<span>Organic Compounds</span>
Societies have changed over time, and consequently, so has science. For example, during the first half of the 20th century, when the world was enmeshed in war, governments made funds available for scientists to pursue research with wartime applications — and so science progressed in that direction, unlocking the mysteries of nuclear energy. At other times, market forces have led to scientific advances. For example, modern corporations looking for income through medical treatment, drug production, and agriculture, have increasingly devoted resources to biotechnology research, yielding breakthroughs in genomic sequencing and genetic engineering. And on the flipside, modern foundations funded by the financial success of individuals may invest their money in ventures that they deem to be socially responsible, encouraging research on topics like renewable energy technologies. Science is not static; it changes over time, reflecting shifts in the larger societies in which it is embedded
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
The volume of a substance is simply the ratio of mass and
density. Therefore:
volume = mass / density
Calculating for volume of Carbon Tetrachloride that the
student has to pour out:
volume = 55.0 g / (1.59 g / cm^3)
<span>volume = 34.60 cm^3</span>
A binary compound of oxygen with another element is called oxide. An oxide is a binary compound of oxygen and another element. Oxygen combines with metals and non-metals to form respective oxides.