Answer:
37 mmol of acetate need to add to this solution.
Explanation:
Acetic acid is an weak acid. According to Henderson-Hasselbalch equation for a buffer consist of weak acid (acetic acid) and its conjugate base (acetate)-
![pH=pK_{a}(acetic acid)+log[\frac{mmol of CH_{3}COO^{-}}{mmol of CH_{3}COOH }]](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28acetic%20acid%29%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7Bmmol%20of%20CH_%7B3%7DCOOH%20%7D%5D)
Here pH is 5.31,
(acetic acid) is 4.74 and number of mmol of acetic acid is 10 mmol.
Plug in all the values in the above equation:
![5.31=4.74+log[\frac{mmol of CH_{3}COO^{-}}{10}]](https://tex.z-dn.net/?f=5.31%3D4.74%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7B10%7D%5D)
or, mmol of
= 37
So 37 mmol of acetate need to add to this solution.
Answer:
False
That is a chemical change
Answer:
20.0/1 x 1mole/58.44=0.34
(Atomic mass of salt)
Been a minute since I've done this, but this is how I remember doing it, soo..hope this helps!