Car X traveled 3d distance in t time. Car Y traveled 2d distance in t time. Therefore, the speed of car X, is 3d/t, the speed of car Y, is 2d/t. Since speed is the distance taken in a given time.
In figure-2, they are at the same place, we are asked to find car Y's position when car X is at line-A. We can calculate the time car X needs to travel to there. Let's say that car X reaches line-A in t' time.

Okay, it takes t time for car X to reach line-A. Let's see how far does car Y goes.

We found that car Y travels 2d distance. So, when car X reaches line-A, car Y is just a d distance behind car X.
Answer:
I would say that I agree with the one that said that each hill must be lower than the previous one and use the principle of conservation of energy to explain.
Explanation:
Roller coaster are usually designed such that its total energy remains conserved at any point on the track. Now, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. At certain height on the track, the total energy of the roller coaster is in form of potential energy, which gets converted to kinetic energy as soon as it starts sliding down the hill till get to the hill's endpoint where it has maximum kinetic energy. The cycle of sliding from a high point on the track to a low point on the track means there is potential energy is converted to kinetic energy and kinetic energy then converts back to potential energy and the cycle continues.
However, due to the effect of gravity and frictional force between the track and the coaster, the energy of the coaster is gradually reduces, so it becomes a bit difficult for the coaster to move to the next hill of the same height. It is for this reason that each hill must be lower than the previous one, so that the coaster can overcome the next hill's height with its reduced energy until it loses all its energy and comes to a stop.
solution:
y = v0t + ½at²
1150 = 79t + ½3.9t²
0 = 3.9t² + 158t - 2300
from quadratic equations and eliminating the negative answer
t = (-158 + v158² -4(3.9)(-2300)) / 2(3.9)
t = 11.37 s to engine cut-off
the velocity at that time is
v = v0 + at
v = 79 + 3.9(11.37)
v = 123.3 m/s
it rises for an additional time
v = gt
t = v/g
t = 123.3 / 9.8
t = 12.59 s
gaining more altitude
y = ½vt
y = 123.3(12.59) /2
y = 776 m
for a peak height of
y = 776 + 1150
Answer:
0.615 m
Explanation:
We need to determine the force on the spring first. By Newton's second law of motion, force is the product of the mass and acceleration. The mass is given.
The acceleration is determined using the equation of motion.
Given parameters:
Initial velocity, <em>u</em> = 0.00 m/s
Distance, <em>s</em> = 4.19 m
Time, <em>t</em> = 0.601 s
We use the equation

With <em>u</em> = 0.00 m/s,



The force is

From Hooke's law, the extension, <em>e</em>, of a string is given by

where <em>k</em> is the spring constant.
Hence,
