Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.
Answer:
Explanation:
Remark
At the time it takes to drop 20 m is the same time it takes to travel 60 m horizontally.
Givens
h = 20 m
hd = 60 m
g = 9.81
vi = 0
Formula
d = vi*t + 1/2 a * t^2 We are solving for t
Solution
When the battery fails, the vertical initial velocity is 0. So we have to find the time it would take to drop 20 meters
d = 0*t + 1/2 * 9.81 a* t^2
20 = 4.91 * t^2 Divide by 4.91
20/4.91 = 4.91 t^2 / 4.91
4.073 = t^2 Take the square root of both sides.
t = 2.02 seconds
Horizontal
d = 60 m
t = 2.02 seconds
v = ?
Note: there is no horizontal deceleration or acceleration
v = d/t
v = 60/2.02
Answer: v = 29.73 m/s
London is making in their room by the way I’m just using this as
Free pouts