Answer:
She will make the jump.
Explanation:
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
First we will consider horizontal motion of stunt women
Displacement = 77 m, Initial velocity = 28 cos 15 = 27.05 m/s, acceleration = 0
Substituting

So she will cover 77 m in 2.85 seconds
Now considering vertical motion, up direction as positive
Initial velocity = 28 sin 15 = 7.25 m/s, acceleration =acceleration due to gravity = -9.8
, time = 2.85
Substituting

So at time 2.85 stunt women is 10.11 m below from starting position, far side is 25 m lower. So she will be at higher position.
So she will make the jump.
Answer:
9.36*10^11 m
Explanation
Orbital velocity v=√{(G*M)/R},
G = gravitational constant =6.67*10^-11 m³ kg⁻¹ s⁻²,
M = mass of the star
R =distance from the planet to the star.
v=ωR, with ω as the angular velocity and R the radius
ωR=√{(G*M)/R},
ω=2π/T,
T = orbital period of the planet
To get R we write the formula by making R the subject of the equation
(2π/T)*R=√{(G*M)/R}
{(2π/T)*R}²=[√{(G*M)/R}]²,
(4π²/T²)*R²=(G*M)/R,
(4π²/T²)*R³=G*M,
R³=(G*M*T²)/4π²,
R=∛{(G*M*T²)/4π²},
Substitute values
R=9.36*10^11 m
Because when you open the faucet, you want the water to
rush out with pressure, not just dribble or ooze out. The
water has to be supplied to the user with pressure. Either
you supply it from a height, or else you'll need to use pumps
to make the pressure.