The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.
NO musical instrument produces a 'pure' tone with only a
single frequency in it.
EVERY instrument produces more or less harmonics (multiples)
in addition to the basic frequency it's playing.
The percussion instruments (drums etc) are the richest producers
of bunches of different frequencies.
Fuzzy electric guitars are next richest.
The strings and brass instruments are moderate producers of
harmonics ... I can't remember which is greater than the other.
Then come the woodwinds ... clarinet, oboe, etc.
The closest to 'pure' tones of single frequency are the sounds
made by the flute and piccolo, but even these are far from 'pure'.
The only way to get a true single-frequency sound is from an
electronic 'sine wave' generator.
Answer:
The charges from the thunderstorm flow through the conductive metal
of which the vehicle is made and distribute themselves on the outside surface of the vehicle
Explanation:
It is actually safer to stay inside a car during a thunderstorm rather than standing outside the car. The reason is this, thunder passes electrical charges through a conductor. The body of the vehicle is made of a metal which is a good conductor of electricity. The charges will redistribute themselves on the body of the vehicle (a metallic conductor of electricity) hence the occupants of the car are relatively safe.
The reasons described above makes those inside the vehicle relatively safe compared to a person standing outside.
Answer:

Explanation:
The energy of a single photon is given by:

where
h is the Planck constant
c is the speed of light
is the wavelength
For the photon in this problem,

So, its energy is

One mole of photons contains a number of photons equal to Avogadro number:

So, the total energy of one mole of photons is

First, we convert kcal to joules:
1 kcal = 4.184 kJ
475 kcal = 1987.4 kJ
Now, calculating the change in internal energy:
ΔU = Q + W; where Q is the heat supplied to the system and W is the work done on the system.
ΔU = -500 + 1987.4
ΔU = 1487.4 kJ