Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.
Answer:
a)188.65m
b)154.35m
c)243.7m
Explanation:
Given data:


(a) The distance from the kicker to each of the 2 spectators is given by:

where,
v= speed of sound
=time taken for the sound waves to reach the ears
m
(b)
where,
v= speed of sound
=time taken for the sound waves to reach the ears

(c)As the angle b/w slight lines from the two spectators to the player is right angle,
hypotenuse=the distance b/w 2 spectators
and, the slight lines are the other 2 lines

Answer:
The correct option is B
Explanation:
Although, it is common knowledge that in an electric field, unlike charges attract and like charges repel. However, to build up an electric potential, a positive charge is brought close to another positive charge - this causes work done to be changed to electric potential energy and stored in the electric field.
It should however be noted that when a negative charge is moved away from a positive charge, the negative charge gains electric potential energy.
Answer:
78 km/h
Explanation:
If I normally drive a 12 hour trip at an average speed of 100 km/h, my destination has a total distance of:
- 100 km/h · 12 h = 1,200 km
Today, I drive the first 2/3 of the distance at 116 km/h. Let's first calculate what 2/3 of the normal distance is.
I've driven 800 km already. I need to drive 400 km more to reach my final destination. I need to figure out my average speed during this last 1/3 of the distance.
To do this, I first need to calculate how much time I spent driving 116 km/h for the past 800 km.
- 116 km/1 h = 800 km/? h
- 800 = 116 · ?
- ? = 800/116
- ? = 6.89655172
I spent 6.89655172 hours driving during the first 2/3 of the distance.
Now, I need to subtract this value from 12 hours to find the remaining time I have left.
- 12 h - 6.89655172 h = 5.10344828 h
Using this remaining time and my remaining distance, I can calculate my average speed.
- ? km/1 hr = 400 km/5.10344828 h
- 5.10344828 · ? = 400
- ? = 400/5.10344828
- ? = 78.3783783148
My average speed during the last third of the distance is around 78 km/h.