Answer:
Following are the solution to the given question:
Explanation:
Its strength from both charges is equivalent or identical. The power is equal. And it is passed down

Therefore, the extent doesn't rely on the fact that charges are the same or different. Newton's third law complies with Electrostatic Charges due to a couple of charges. They are similar in magnitude, and they're in the other way.

Answer:
doubled the initial value
Explanation:
Let the area of plates be A and the separation between them is d.
Let V be the potential difference of the battery.
The energy stored in the capacitor is given by
U = Q^2/2C ...(1)
Now the battery is disconnected, it means the charge is constant.
the separation between the plates is doubled.
The capacitance of the parallel plate capacitor is inversely proportional to the distance between the plates.
C' = C/2
the new energy stored
U' = Q^2 / 2C'
U' = Q^2/C = 2 U
The energy stored in the capacitor is doubled the initial amount.
The answer is D.
I hope this helps.
Answer:
0.48 m
Explanation:
I'm assuming that this takes place in an ideal situation, where we neglect a host of factors such as friction, weight of the spring and others
If the mass is hanging from equilibrium at 0.42 m above the floor, from the question, and it is then pulled 0.06 m below that particular position. This pulling is a means of adding more energy into the spring, when it is released, the weight compresses the spring and equals its distance (i.e, 0.06 m) above the height.
0.42 m + 0.06 m = 0.48 m
At the highest point thus, the height is 0.48 m above the ground.
Answer:
a. 3.039cm
b.magnetic field is 
Explanation:
Direction of the solenoid magnetic field is along the axis of the solenoid. and magnetic field due to the wire perpendicular to that due to the solenoid.. Magnetic field at r is given by:

Angle of net magnetic field from axial direction is given by:
,
Field due to solenoid:

Field due to wire:

Therefore, r:

Hence, the radial distance is 3.039cm
b.The magnetic field strength is given by:

Hence, the magnetic field is 