C.
hope that helped you!!!
The buoyant force must be greater than water.
<span>1.0 m/s
Momentum = mass x velocity
Total Momentum before any collision = total momentum afterwards
4.0 x 3.0= 12 :g x momentum before (x g because using weight)
Afterwards, if the velocity of the two joined is v then we get:
'momentum x g'=12v
so 12v=12
so v=1m/s</span>
Answer:

Explanation:
The gravitational force between the proton and the electron is given by

where
G is the gravitational constant
is the proton mass
is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

The electrical force between the proton and the electron is given by

where
k is the Coulomb constant
is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

So, the ratio of the electrical force to the gravitational force is

So, we see that the electrical force is much larger than the gravitational force.
Here we know that



now from kinematics we have

now from above all values we have



so final angular speed is -12.6 rad/s