Answer:
Explanation:
Let t represent the time for Tina to catch David.
Hence, considering the equation of linear motion S = ut + 1/2at^2..... 1
For David u = 28.0 m/s where 'a' is set to nought
S = ut
S = 28t.......2
For Tina consider equation 1
Where acceleration = 2.90m/s^2 and u is set at nought
S = 1/2×2.90 m/s×t^2.......3
Equate 2 and 3
28t = 1.45t^2
Divide through by t
28 = 1.45t
t = 28/1.45
t = 19.31seconds
Now put the value of t into equation 3
S = 1/2×2.90 m/s×t^2.......3
= 1.45×20×20
= 580m
Tina must have driven 580meters before passing David
Considering the equation of linear motion : V^2 = U^2+2as
Where u is set at nought
V^2 = 2as
V^2 = 2×2.9×580
V^2 = 3364
V = √3364
V = 58m/s
Her speed will be 58m/s
It's a chemical chemical change
Assume a maximum stopping acceleration of g/2 where g is acceleration due to gravity.
Answer:
2.99 m/s
Explanation:
Stopping distance, s = 3 ft = 0.914 m
final velocity, v = 0
a = g/2 = 4.9 m/s²
Use third equation of motion:

substitute the values to find the speed of train:

Velocity (unit:m/s) of the wave is given with the formula:
v=f∧,
where f is the frequency which tells us how many waves are passing a point per second (unit: Hz) and ∧ is the wavelength, which tells us the length of those waves in metres (unit:m)
f=1/T , where T is the period of the wave.
In our case: f=1/3
∧=v/f=24m/s/1/3=24*3=72m