Answer: v2=331.289mL
Explanation:
Formula for ideal gas law is p1v1/T1=p2v2/T2
P1=782.3mmHg
P2=769mmHg at STP
V1=362.4mL
V2=?
T1=273+34.4=307.4k
T2=273k at STP
Then apply the formula and make v2 the subject of formula
V2= 782.3×362.4×273/760×307.4
V2=77397006.96/233624
V2=331.289mL
Answer:
4
Explanation:
cuz i just took a test and the question was this just reversed. if the ph is 4 and the other ph is 100x greater it’s 6. i don’t kno the reasoning lol
Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
MThe heat energy required to raise the temperature of 0.36Kg of copper from 22 c to 60 c is calculate using the following formula
MC delta T
m(mass)= 0.360kg in grams = 0.360 x1000 = 360 g
c(specific heat energy) = 0.0920 cal/g.c
delta T = 60- 23 = 37 c
heat energy is therefore= 360g x0.0920 cal/g.c x 37 c= 1225.44 cal
Explanation:
Zn=65
Cl2= 35+35=70
65+70=135g
1 mole ZnCl2 = 135g
x mole = 17.5g
17.5g × 1 mole/ 135g= 0.129 moles en 17.5g de ZnCl2