Answer:
a
Explanation:
Beer-Lambert Law shows the relationship between the factors affecting the absorbance of a sample in relation to the concentration. These factors are:
the concentration c, path length (l), and the molar absorptivity (ε).
As a result, more radiation is assimilated as the concentration rises, and the absorbance rises as well. However, the longer the path length, the increase in the number of molecules and the higher the absorbance.
Thus, the straight-line equation for Beer-Lambert's law is:
A = εcl
From the above explanation, the option that doesn't relate to the deviations from linearity of Beer's law plot is in Option (a).
Bohr suggested, that there are definitive shells of particular energy and angular momentum in which an electron can revolve. It was not in Rutherford's model
Answer:
me too? HAHAHHAHAHAHAHAHAHAHAHHA
Answer:
9.15 atm
Explanation:
Ideal gas equation of state PV=nRT
P in hPa, V in L, n in mol, R is a constant which is 83.1 hpa*L/mol*k, T in kelvin.
Plug in all the number, and we will get:
P*6.21=2.02*83.1*343
P =9271.6(in hpa)=9.15 atm
The reactants are methane and oxygen.
The products are carbon dioxide and water.