Answer :
- Nuclear fission : In nuclear reaction, the nucleus of a larger atom breaks into two or more smaller nuclei. In fission process, protons and neutrons are produced and larger amount of energy is released.
Example : In nuclear power plant, the energy released from the process of nuclear fission which is converted into electrical energy that is used in our homes and factories.
- Nuclear fusion : In nuclear reaction, the nuclei of two or more smaller atoms combine together to form single larger molecule. In fusion process, the mass of the resulting nuclei is more as compared to the starting nuclei and large amount of energy is also released.
Example : This process occurs in the sun and stars. In this, the isotopes of Hydrogen, Tritium and Deuterium combine together to form a neutron and a helium atom under high pressure and temperature.
This is a heterogeneous mixture.
Answer:
The new pressure becomes one third of the initial pressure.
Explanation:
The relation between pressure and volume at constant temperature is given by :

Let new pressure and volume be P' and V' respectively.
V'=3V (given)
So,

Hence, new pressure becomes one third of the initial pressure.
<u>Answer:</u>
<u>For a:</u> The empirical formula of the compound is 
<u>For b:</u> The empirical formula of the compound is 
<u>Explanation:</u>
We are given:
Percentage of P = 43.6 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.406 moles.
For Phosphorus = 
For Oxygen = 
Converting the moles in whole number ratio by multiplying it by '2', we get:
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of P : O = 2 : 5
Hence, the empirical formula for the given compound is 
We are given:
Percentage of K = 28.7 %
Percentage of H = 1.5 %
Percentage of P = 22.8 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of K = 28.7 g
Mass of H = 1.5 g
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Potassium =
Moles of Hydrogen =
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.735 moles.
For Potassium = 
For Hydrogen = 
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of K : H : P : O = 1 : 2 : 1 : 4
Hence, the empirical formula for the given compound is 
amount of CaO that would be produced when 35.5g of CaCO3 decompose on heating (Ca= 40, O = 16, C = 12, H = 1
just put the values to have answer