Answer:
Hewo My Lovelys!!
Answer is down below!!
Explanation:
The answer is C) The nail exerts an equal force on the hammer in the opposite direction.
Reason: The Newtons third law states that there is an equal an opposite reaction for every action. When hammer pushes the nail, the nail will push the hammer back in opposite direction. When the hammer hits a nail then nail will exert the equal and opposite force to the hammer. These both objects will exert force on each other in opposite directions.
Hope this helps!! =3
Have a great day, evening, of night!! <3
~ XxGhostMosskitxX
Answer:
Explanation:
Given,
initial angular speed, ω = 3,700 rev/min
=
final angular speed = 0 rad/s
Number of time it rotates= 46 times
angular displacement, θ = 2π x 46 = 92 π
Angular acceleration



To answer this problem, we will use the equations of motions.
Part (a):
For the ball to start falling back to the ground, it has to reach its highest position where its final velocity will be zero.
The equation that we will use here is:
v = u + at where
v is the final velocity = 0 m/sec
u is the initial velocity = 160 m/sec
a is acceleration due to gravity = -9.8 m/sec^2 (the negative sign is because the ball is moving upwards, thus, its moving against gravity)
t is the time that we want to find.
Substitute in the equation to get the time as follows:
v = u + at
0 = 160 - 9.8t
9.8t = 160
t = 160/9.8 = 16.3265 sec
Therefore, the ball would take 16.3265 seconds before it starts falling back to the ground
Part (b):
First, we will get the total distance traveled by the ball as follows:
s = 0.5 (u+v)*t
s = 0.5(160+0)*16.3265
s = 1306.12 meters
The equation that we will use to solve this part is:
v^2 = u^2 + 2as where
v is the final velocity we want to calculate
u is the initial velocity of falling = 0 m/sec (ball starting falling when it reached the highest position, So, the final velocity in part a became the initial velocity here)
a is acceleration due to gravity = 9.8 m/sec^2 (positive as ball is moving downwards)
s is the distance covered = 1306.12 meters
Substitute in the above equation to get the final velocity as follows:
v^2 = u^2 + 2as
v^2 = (0)^2 + 2(9.8)(1306.12)
v^2 = 25599.952 m^2/sec^2
v = 159.99985 m/sec
Therefore, the velocity of the ball would be 159.99985 m/sec when it hits the ground.
Answer:
- Newton's first law applies. An object at rest will stay that way until a force is applied.
- Any amount of effort can be applied to any amount of mass (in the ideal case). The question is not sufficiently specific.
Explanation:
A force is required to move an object because the object will stay at rest until a force is applied.
__
The effort required to lift or push two masses instead of one depends on the desired effect. For the same kinetic energy, no more effort is required. For the same momentum, half the effort is required for two masses. For the same velocity, double the effort is required.
We need the story or article