<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
Your answer is A, Ocean Waves- because A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. Ocean waves do just that :)
Hope this helps!!
Force = mass * acceleration = 1500kg * 8m/s²
Complete Question
The complete question is shown on the first uploaded image
Answer:
The maximum emf is 
The emf induced at t = 1.00 s is 
The maximum rate of change of magnetic flux is 
Explanation:
From the question we are told that
The number of turns is N = 44 turns
The length of the coil is 
The width of the coil is 
The magnetic field is 
The angular speed is 
Generally the induced emf is mathematically represented as

Where
is the maximum induced emf and this is mathematically represented as

Where
is the magnetic flux
N is the number of turns
A is the area of the coil which is mathematically evaluated as

Substituting values


substituting values into the equation for maximum induced emf


given that the time t = 1.0sec
substituting values into the equation for induced emf 


The maximum induced emf can also be represented mathematically as

Where
is the magnetic flux and
is the maximum rate at which magnetic flux changes the value of the maximum rate of change of magnetic flux is

Answer:
you need kinetic energy because it is the energy that is used when In motion