Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.
Answer:
Ф = 239.73 rad
Explanation:
α = 12 + 15×t
W = ∫α×dt
= ∫(12 + 5×t)×dt
= 12×t + 2.5×t^2
then:
Ф = ∫W×dt
= ∫(12×t + 2.5×t^2)dt
= 6×t^2 + 5/6×t^3
therefore the angle at t = 4.88s is:
Ф = 6×(4.88)^2 + 5/6×(4.88)^3
= 239.73 rad
Answer:
They are written or edited by anyone
Explanation:
I think that in order for work to be done, the object must move in the direction of the force and move over a distance.
Because the Moon has a very small surface area compared to other spacial geo-bodies, it has cooled down much faster than Earth. Any water on the moon would freeze.