Answer:
Suppose the micrometeoroid weighed 1 g = .001 kg
Suppose also the spacecraft were moving at 18,000 mph (1.5 hrs per rev)
Usually, the smaller particle would be moving but for simplicity suppose that it were stationary wrt the ground
v = 18000 miles / hr * 1500 m/mile / 3600 sec/hr = 7500 m/s
KE = 1/2 * .001 kg * (7500 m)^2 = 28,125 Joules
One can see that 28000 Joules could be damaging amount of energy
Answer: D. 1
Explanation:
Choice 1 could represent a neutral atom of oxygen
Explanation:
because conduction takes place in objects whose particles are close/touching each other therefore conduction happens in solid as liquid and gas paricles are not close to each other
Ok, we need to find a relation for the speed as it relates to the acceleration. This is given by the integral of acceleration:

Where we have the initial velocity is 0m/s and a will be 4.90m/s².
But we see there is an issue now... We know the velocity as a function of time, but we don't know how long the car has been accelerating! We need to calculate this time by now finding the position function as a function of time. This way we can solve for the time, t, that it takes to go 200m accelerating this way and then substitute that time into our velocity equation and get the velocity.
Position is just the integral of velocity:

Where the initial velocity and initial position are both zero.
Now we set this position function equal to 200m and find the time, t, it took to get there

Now let's put t=9.04s into our velocity equation: