Answer:
Explanation: The lowest pressure in a laboratory is 4.0×10^-11Pa
Using Ideal gas equation
PV = nRT
P= 4.0×10^-11Pa
V= 0.020m^3
T= 20+273= 293k
n=number of moles = m/A
Where m is the number of molecules and A is the Avogradro's number=6.02×10²³/mol
R=8.314J/(mol × K)
PV= m/A(RT)
4.0×10^-11 ×0.020 = m/6.02×10²³(8.314×293)
m = 4.0×10^-11×0.020×6.02×10^23 / (8.314×293)
m = 1.98×10^8 molecules
Therefore,the number of molecules is 1.98×10^8
Answer:
0.21 g
Explanation:
The equation of the reaction is;
NaCl(aq) + AgNO3(aq) -----> NaNO3(aq) + AgCl(s)
Number of moles of NaCl= 0.0860 g /58.5 g/mol = 0.00147 moles
Number of moles of AgNO3 = 30/1000 L × 0.050 M = 0.0015 moles
Since the reaction is 1:1, NaCl is the limiting reactant.
1 mole of NaCl yields 1 mole of AgCl
0.00147 moles of NaCl yields 0.00147 moles of AgCl
Mass of precipitate formed = 0.00147 moles of AgCl × 143.32 g/mol
= 0.21 g
Answer:
8000 metres is equal to 4.971 miles
equation
8000 (number of meters) divided by 1609.34 ( equivalent of miles in one meter)
is equal to 4.971
Answer:
number of moles = 6.393 moles
Explanation:
One mole of any substance contains Avogadro's number (6.022 * 10^23) of atoms.
Therefore, to know the number of moles that contain 3.85 * 10^24 atoms, all we have to do is cross multiplication as follows:
1 mole ......................> 6.022 * 10^23
?? moles ..................> 3.85 * 10^24
number of moles = (3.85 * 10^24 *1) / (6.022 * 10^23)
number of moles = 6.393 moles
Hope this helps :)
Answer:
Whether a solution is acidic or basic can be measured on the pH scale. When universal indicator is added to a solution, the color change can indicate the approximate pH of the solution. Acids cause universal indicator solution to change from green toward red. ... Acidic solutions have a pH below 7 on the pH scale.
Explanation:
Please Mark me brainliest