The rate of entropy change:
The rate of entropy change of the working fluid during the heat addition process is 3 kW/K
What is the Carnot cycle?
- The Carnot Cycle is a thermodynamic cycle made up of reversible isothermal expansion, adiabatic expansion, isothermal compression, and adiabatic compression processes in succession.
- The ratio of the heat absorbed to the temperature at which the heat was absorbed determines the change in entropy.
The entropy of a system:
The rate of heat addition is expressed as,
Q = 
The entropy of a system is a measure of how disorderly a system is getting. The rate of entropy generation during heat addition is,

Calculation:
<u>Given:</u>
= 400K
= 1600K
W = 3600 kW
Put all the values in the above equation, and we get,
=
= 3 kW/K
The rate of entropy change is 3 kW/K
Learn more about the Carnot cycle here,
brainly.com/question/13002075
#SPJ4
Answer:
The pressure is higher than the atmospheric one, therefore the temperature is less.
Explanation:
When it is closed permanently, the pressure of the pot inside it increases, generating that the atoms and particles of the water are closer together, increasing their kinetic energy, if intermolecular friction and therefore the boiling point is lower, because the water reaches a boil or boil at a lower temperature.
Answer:
Options B and C are the two criteria that are most essential
Explanation:
When trying to develop a novel process, <u>it is important that the new process involves the use of equipment that can be operated safely by workers so as to prevent death or injury in the cause of handling this equipment</u>. If this equipment is seen not to be safe or cannot be handled safely by workers, it can/will force workers to previous or alternative methods that require more safe equipment.
Also, the process must be able to maximize the most of the reactants, i.e <u>the process must be able to convert a good percentage of the reactants into the desired product (phosphorus pentachloride) since that is the focus</u>. This will also lead to reduction of byproducts produced which could be useful or otherwise (a loss).
Guy-Lussac's Law states that the volume and the temperature are directly proportional given that the pressure remains constant.
For this problem, we will assume constant pressure. Based on the law:
(Volume/Temperatur)1 = (Volume/Temperature)2
(3.75/100) = (6.52/T)
T = 166.667 kelvin
Answer:
The activation energy of a chemical reaction is the energy that is required to be supplied for a chemical reaction to take place. The activation energy for the reaction of sodium is low compared to the energy released such that the reaction of sodium and water is spontaneous resulting in the melting of the sodium into liquid form
The activation energy of a candle wax is much higher, requiring the ignition of the wick which burns and in turn melts the candle wax to release vapors that burns alongside the wick to produce sooth carbon dioxide, carbon monoxide and water vapor and release of heat energy which also fuels further combustion of the candle wax and wick
Therefore, the activation energy of the candle wax and wick which require the heat of direct flame from an ignited matches is higher than the activation energy of sodium placed in a medium of water that reacts spontaneously without heat application
Explanation: