Answer:
Adding more substrate would overcome the effect of the compound
Explanation:
- Enzymes are biochemical catalysts that speed up chemical reactions. They act on specific substrate to convert them to products.
- Compounds known as inhibitors slow down the rate of enzyme activity.
- Inhibitors are classified as competitive and non-competitive inhibitors.
- Competitive inhibitors will compete with the substrate to bind the active sites on the enzyme. The effect of competitive inhibitors may be reduced by increasing the concentration of the substrate.
- The compound added by the biologist was a competitive inhibitor and therefore adding more substrate would overcome its effect on enzyme catalysis
- Non-competitive inhibitors binds the active site of the enzyme permanently and prevents the substrate from accessing the active sites.
Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm
CBr4 is a symmetric tetrahedral molecule so it will be non-polar.
Answer:
Ethanamine (also known as ethylamine)
Explanation:
The compound that is requested by the question is ethanamine. Its trivial name is ethylamine.
It is a compound that contained the ethyl moiety (CH3CH2-) as well as the amine moiety (-NH2).
Ethanamine has a structure that can easily be determined by the statements in the question.
The structure of ethanamine is shown in the image attached.
Answer:
the concentration of the reactants
the temperature in heating