Hello!
The atomic number is determined only by the number of protons in the nucleus of an atom. But, in a neutral atom it also represents the number of electrons in the electron cloud.
Neutrons are only important in the nucleus for helping us find atomic weight, which varies as we move along the perodic table and does not always equal the same amount of it's atomic number. Which is why it would not be a suitable answer for the first blank space. Electrons do not work either as they do not exist inside the nucleus but rather outside the atom.
The second space, since it states is in the electron cloud, we can deduct that electrons would be an appropriate answer there.
If you need anymore help feel free to ask, but I hope this answers your question.
A. 1,2,3. The solutions are getting lighter meaning the concentration is decreasing. Its most likely that water was added to dilute the solutions.
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ
The second option only.
<h3>Explanation</h3>
A base neutralizes an acid when the two reacts to produce water and a salt.
Sulfuric acid H₂SO₄ is the acid here. There are more than one classes of bases that can neutralize H₂SO₄. Among the options, there are:
Metal hydroxides
Metal hydroxides react with sulfuric acid to produce water and the sulfate salt of the metal.
.
The formula for calcium sulfate
in option A is spelled incorrectly. Why? The charge on each calcium
is +2. The charge on each sulfate ion
is -2. Unlike
ions, it takes only one
ion to balance the charge on each
ion. As a result,
and
ions in calcium sulfate exist on a 1:1 ratio.
.
Ammonia, NH₃
Ammonia NH₃ can also act as a base and neutralize acids. NH₃ exists as NH₄OH in water:
.
The ion
acts like a metal cation. Similarly to the metal hydroxides, NH₃ (or NH₄OH) neutralizes H₂SO₄ to produce water and a salt:
.
The formula of the salt (NH₄)₂SO₄ in the fourth option spelled the ammonium ion incorrectly.
As part of the salt (NH₄)₂SO₄, the ammonium ion NH₄⁺ is one of the products of this reaction and can't neutralize H₂SO₄ any further.
D. dishwashing Soap/Liquid