Keeping in mind a total ignorance of both the health benefits of these teas, and the interaction between milk and antioxidants, I believe that it is possible that milk could hinder these benefits.
Tea is usually a hot beverage. Milk, when added to this beverage, would easily dissolve. When a solute (milk) dissolves in a solvent (tea), the chemical properties of the resulting solution can become quite distinct from both of the original substances. It seems possible that the same chemical properties of tea that make it healthy could be altered by the addition of milk.
Answer:
When the hammer is in the sun, heat flows by radiation
When you pick up the hammer, heat flows by conduction
Explanation:
As the hammer lies in the sun, heat is transferred to the hammer by radiation. Heat energy reaches the earth from the sun by radiation. Radiation is a mode of beat transfer in which heat is transferred without a material medium.
When you pick up the hammer, heat flows to your hand by conduction because your body is a conductor of heat.
Answer:

Explanation:
Hello!
In this case, since it is observed that hot cadmium is placed in cold water, we can infer that the heat released due to the cooling of cadmium is gained by the water and therefore we can write:

Thus, we insert mass, specific heat and temperatures to obtain:

In such a way, since the specific heat of cadmium and water are respectively 0.232 and 4.184 J/(g °C), we can solve for the equilibrium temperature (the final one) as shown below:

Now, we plug in to obtain:

NOTE: since the density of water is 1g/cc, we infer that 25.00 cc equals 25.00 g.
Best regards!
Answer:
The signal from the deceleration sensor ignites the gas-generator mixture by an electrical impulse, creating the high-temperature condition necessary for NaN3 to decompose. The nitrogen gas that is generated then fills the airbag.
basically, the nitrogen fills the bag
Answer:
0.682L or 682mL
Use Charles Law of V1/T1 = V2/T2
V1 = 0.6L
T1 = 293K
V2=?
T2= 333K
Explanation:
?