Answer: Stars are formed in clouds of gas and dust, known as nebulae. Nuclear reactions at the centre (or core) of stars provides enough energy to make them shine brightly for many years. The exact lifetime of a star depends very much on its size.
Explanation: I try to do your question, hope this help
Answer:
In two significant figure 360K
Explanation:
The temperature difference (ΔT) can be calculated as the boiling temperature minus the freezing temperature in Fahrenheit.
Hence,
ΔT = 212 - 32
ΔT = 180°F
To convert to °F to kelvin, we use the formula below
= (°F - 32) × 5/9 + 273.15
= (180°F - 32) × 5/9 + 273.15
= 355.37K ⇔ 360K
Answer:
T'=92.70°C
Explanation:
To find the temperature of the gas you use the equation for ideal gases:

V: volume = 3000cm^3 = 3L
P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm
n: number of moles
R: ideal gas constant = 0.082 atm.L/mol.K
T: temperature = 27°C = 300.15K
For the given values you firs calculate the number n of moles:
![n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BPV%7D%7BRT%7D%3D%5Cfrac%7B%281520%5B0.001315atm%5D%29%283L%29%7D%7B%280.082%5Cfrac%7Batm.L%7D%7Bmol.K%7D%29%28300.15K%29%7D%3D0.200moles)
this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

hence, T'=92.70°C
first off lemme just say this is really easy man, just look at the directions
Blank #1: -23
Blank #2: 23
Answer:
Explanation:
Given





R for Helium 

mass of gas 


Similarly
can be found


Work done 


Since it is a polytropic Process
therefore 






From Energy balance
Neglecting kinetic and Potential Energy change

Change in Internal Energy 




i.e. Heat is being removed