He realized that the physical and chemical properties of elements<span> were related to their atomic mass in a '</span>periodic<span>' way, and </span>arranged<span> them so that groups of </span>elements<span> with similar properties fell into vertical columns in </span>his table<span>.
</span><span>
</span>
Answer:
An acid dissociation constant, K a, (also known as acidity constant, or acid-ionization constant) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction ↽ − − ⇀ − + + known as dissociation in the context of acid–base reactions.
Explanation:
Answer:
- The molarity of the student's sodium hydroxide solution is 0.0219 M
Explanation:
<u>1) Chemical reaction.</u>
a) Kind of reaction: neutralization
b) General form: acid + base → salt + water
c) Word equation:
- sodium hydroxide + oxalic acid → sodium oxalate + water
d) Chemical equation:
- NaOH + H₂C₂O₄ → Na₂C₂O₄ + H₂O
b) Balanced chemical equation:
- 2NaOH + H₂C₂O₄ → Na₂C₂O₄ + 2H₂O
<u>2) Mole ratio</u>
- 2mol Na OH : 1 mol H₂C₂O₄ :1 mol Na₂C₂O₄ : 2 mol H₂O
<u>3) Starting amount of oxalic acid</u>
- mass = 28 mg = 0.028 g
- molar mass = 90.03 g/mol
- Convert mass in grams to number of moles, n:
n = mass in grams / molar mass = 0.028 g / 90.03 g/mol = 0.000311 mol
<u>4) Titration</u>
- Volume of base: 28.4 mL = 0.0248 liter
- Concentration of base: x (unknwon)
- Number of moles of acid: 2.52 mol (calculated above)
- Proportion using the theoretical mole ratio (2mol Na OH : 1 mol H₂C₂O₄)

That means that there are 0.000622 moles of NaOH (solute)
<u>5) Molarity of NaOH solution</u>
- M = n / V (liter) = 0.000622 mol / 0.0284 liter = 0.0219 M
That is the correct number using <em>three signficant figures</em>, such as the starting data are reported.
Answer:
During photosynthesis, plants absorb carbon dioxide and sunlight to create fuel—glucose and other sugars—for building plant structures. This process forms the foundation of the fast (biological) carbon cycle.
The Slow Carbon Cycle. ... Atmospheric carbon combines with water to form a weak acid—carbonic acid—that falls to the surface in rain. The acid dissolves rocks—a process called chemical weathering—and releases calcium, magnesium, potassium, or sodium ions.