Answer:
E.two angles are vertical angles if, and only if they are not adjacent angles
Answer:
The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1
Explanation:
Let the weight that is hooked to two springs be w.
Spring#1:
Force constant= k
let x1 be the extension in spring#1
Therefore by balancing the forces, we get
Spring force= weight
⇒k·x1=w
⇒x1=w/k
Energy stored in a spring is given by
where k is the force constant and x is the extension in spring.
Therefore Energy stored in spring#1 is, 
⇒
⇒
Spring #2:
Force constant= 2k
let x2 be the extension in spring#2
Therefore by balancing the forces, we get
Spring force= weight
⇒2k·x2=w
⇒x2=w/2k
Therefore Energy stored in spring#2 is, 
⇒
⇒
∴The ratio of the energy stored by spring #1 to that stored by spring #2 is
2:1
Answer:
The use of force in our everyday life is very common. We use force to walk on the road, to lift the objects, to throw a cricket ball, or to move a given body by some particular speed or direction. We are very familiar with the various effects of force. We can exert pull and push.
Explanation:
plzzz brainlist me
Answer:
The acceleration that the jet liner that must have is 2.241 meters per square second.
Explanation:
Let suppose that the jet liner accelerates uniformly. From statement we know the initial (
) and final speeds (
), measured in meters per second, of the aircraft and likewise the runway length (
), measured in meters. The following kinematic equation is used to calculate the minimum acceleration needed (
), measured in meters per square second:

If we know that
,
and
, then the acceleration that the jet must have is:


The acceleration that the jet liner that must have is 2.241 meters per square second.
Answer:
91.84 m/s²
Explanation:
velocity, v = 600 m/s
acceleration, a = 4 g = 4 x 9.8 = 39.2 m/s^2
Let the radius of the loop is r.
he experiences a centripetal force.
centripetal acceleration,
a = v² / r
39.2 x r = 600 x 600
r = 3600 / 39.2
r = 91.84 m/s²
Thus, the radius of the loop is 91.84 m/s².